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Preface

Welcome to the proceedings of the 3rd Power-Aware Computer Systems
(PACS 2003) Workshop held in conjunction with the 36th Annual International
Symposium on Microarchitecture (MICRO-36). The increase in power and en-
ergy dissipation in computer systems has begun to limit performance and has
also resulted in higher cost and lower reliability. The increase also implies re-
duced battery life in portable systems. Because of the magnitude of the problem,
all levels of computer systems, including circuits, architectures, and software, are
being employed to address power and energy issues. PACS 2003 was the third
workshop in its series to explore power- and energy-awareness at all levels of
computer systems and brought together experts from academia and industry.

These proceedings include 14 research papers, selected from 43 submissions,
spanning a wide spectrum of areas in power-aware systems. We have grouped
the papers into the following categories: (1) compilers, (2) embedded systems,
(3) microarchitectures, and (4) cache and memory systems.

The first paper on compiler techniques proposes pointer reuse analysis that is
biased by runtime information (i.e., the targets of pointers are determined based
on the likelihood of their occurrence at runtime) to map accesses to energy-
efficient memory access paths (e.g., avoid tag match). Another paper proposes
compiling multiple programs together so that disk accesses across the programs
can be synchronized to achieve longer sleep times in disks than if the programs
are optimized separately.

The first paper on embedded systems proposes scaling down the components
(display, wireless, and CPU) of a mobile system to match user requirements
while reducing energy. The second paper explores an integer linear programming
approach for embedded systems to decide which instructions should be held in a
low-power scratchpad instead of a high-power instruction cache. The next paper
predicts battery life at runtime to help the operating system in managing power.
The next paper proposes a tiled architecture that exploits parallelism enabled by
global interconnects and synchronized design to achieve high energy efficiency.
The last paper in this group proposes a policy to decide which of the multiple
wireless network interfaces provided in a mobile device should be used based on
the power and performance needs of the mobile system.

The third group of papers focuses on microarchitecture techniques, and in-
cludes an analysis of energy, area, and speed trade-offs between table lookup for
instruction reuse and actual computation. Another paper proposes scheduling
transactions in a multiprocessor to as few CPUs as possible to increase the num-
ber of CPUs in deep-sleep state. The next paper evaluates the extent of energy
savings achieved by avoiding instructions that are either not needed for correct
behavior or not committed, and by sizing microarchitectural structures. The last
paper proposes coupled power and thermal simulation and studies the effect of
temperature on leakage energy.
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The last group proposes techniques to reduce power in caches and memory.
The first paper in this group studies the interaction between dynamic voltage
scaling (DVS) and power-aware memories and proposes policies to control the
CPU’s DVS setting and the memory’s power setting together. The next paper
uses the criticality of instructions to determine which locations should be placed
in high-speed cache banks and which in low-power banks. The last paper pro-
poses applying high-performance techniques only to the most-frequently-used
instruction traces and saving power on the other traces.

PACS 2003 was successful due to the quality of the submissions, the efforts of
the program committee, and the attendees. We would like to thank Pradip Bose
for his interesting keynote address, which described microarchitectural choices
at the early architecture-definition stage to achieve power and energy efficiency.
We would like to also thank Glen Reinman, Jason Fritts, and the other members
of the MICRO-36 organizing committee who helped arrange the local accommo-
dations and publicize the workshop.

Babak Falsafi and T.N. Vijaykumar
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Runtime Biased Pointer Reuse Analysis and
Its Application to Energy Efficiency

Yao Guo, Saurabh Chheda, and Csaba Andras Moritz

Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, MA 01003
{yaoguo, schheda, andras}@ecs.umass.edu

Abstract. Compiler-enabled memory systems have been successful in
reducing chip energy consumption. A major challenge lies in their appli-
cability in the context of complex pointer-intensive programs. State-of-
the-art high precision pointer analysis techniques have limitations when
applied to such programs, and therefore have restricted use. This paper
describes runtime biased pointer reuse analysis to capture the behavior
of pointers in programs of arbitrary complexity. The proposed technique
is runtime biased and speculative in the sense that the possible targets
for each pointer access are statically predicted based on the likelihood
of their occurrence at runtime, rather than conservative static analy-
sis alone. This idea implemented as a flow-sensitive dataflow analysis
enables high precision in capturing pointer behavior, reduces complex-
ity, and extends the approach to arbitrary programs. Besides memory
accesses with good reuse/locality, the technique identifies irregular ac-
cesses that typically result in energy and performance penalties when
managed statically. The approach is validated in the context of a com-
piler managed memory system targeting energy efficiency. On a suite
of pointer-intensive benchmarks, the techniques increase the fraction of
memory accesses that can be mapped statically to energy efficient mem-
ory access paths by 7-72%, giving a 4-31% additional L1 data cache
energy reduction.

1 Introduction

The memory system, including caches, consumes a significant fraction of the
total system power. For example, the caches and translation look-aside buffers
(TLB) combined consume 23% of the total power in the Alpha 21264 [7], and
the caches alone use 42% of the power in the StrongARM 110 [8]. Recent studies
have proposed compiler-enabled cache designs [2, 12, 14] to improve cache per-
formance as well as energy consumption. A major challenge, however, is their
applicability when dealing with complex pointer-intensive programs. This paper
presents a new approach to deal with complex pointer-intensive programs in
such schemes based on the idea of runtime biased pointer reuse analysis. In ad-
dition to compiler-enabled memory systems, applications such as compiler-based
prefetching, software-based memory dependence speculation, and parallelization,
could also significantly benefit from the techniques presented in this paper.

B. Falsafi and T.N. Vijaykumar (Eds.): PACS 2003, LNCS 3164, pp. 1–12, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 Y. Guo, S. Chheda, and C.A. Moritz

Many researchers have focused on program locality/reuse analysis for array-
based memory accesses [9, 15, 16]. In general, array accesses are more regular
than pointer-based memory accesses because arrays are normally accessed se-
quentially while pointers typically have more complicated behavior. Array based
accesses are also relatively easy to deal with as type information is available to
guide the analysis.

Intensive use of pointers makes however program analysis difficult since a
pointer may point to different locations during execution time; the set of all
locations a pointer can access at runtime is typically referred to as the location
set. This difficulty is further accentuated in the context of large and/or complex
programs. For example, more precise dataflow-based implementations of pointer
analysis have limitations (e.g., often cannot complete analysis) when used for
large programs or when special constructs such as pointer based calls, recursion,
or library calls are found in the program. The less precise alias analysis techniques
(e.g., those that are flow-insensitive) have lower complexities but don’t provide
precise enough static information about pointer location sets.

Our objective is to develop new techniques to capture pointer behavior that
can be used to analyze complex applications with no restrictions, while provid-
ing good precision. The idea is to determine pointer behavior by capturing the
frequent locations for each pointer rather than all the locations as conservative
analysis would do. Predicted pointer reuse is therefore runtime biased and specu-
lative in the sense that the possible targets for each pointer access are statically
predicted/speculated based on the likelihood of their occurrence at run-time.
The approach enables lower complexity and possibly higher precision analysis
than traditional dataflow based approaches because locations predicted to be
infrequently accessed are not considered as possible targets. The approach is ap-
plicable in all architecture optimizations that use some kind of compiler-exposed
speculation hardware and when absolute correctness of static information lever-
aged is not necessary. This includes for example compiler managed energy-aware
memory systems, compiler managed prefetching, and speculative parallelization
and synchronization - these applications by their design would benefit from pre-
cise memory behavior information and would tolerate occasional incorrect static
control information.

This paper shows the application of the proposed pointer techniques to an
energy-efficient compiler-enabled memory management system published previ-
ously, called Cool-Mem [2]. The Cool-Mem architecture achieves energy reduc-
tion by implementing energy efficient statically managed access paths in addi-
tion to the conventional ones. The compiler decides which path is used based on
static information extracted. For accesses that reuse the same cache line, cache
mapping information is maintained to help eliminate redundancy in cache disam-
biguation. Whenever the compiler can correctly channel data memory accesses
to the static access path, significant energy reduction is achieved; the statically
managed access path does not need Tag access and associative lookup in RAM-
Tag caches, and Tag access in CAM-Tag caches. We show that the Cool-Mem
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architecture, if extended with our techniques, is able to handle pointer based
accesses and achieve up to 30% additional energy savings in the L1 data cache.

The rest of this paper is structured as follows. Section 2 presents the runtime
biased compiler analysis techniques, including pointer analysis, distance analysis,
and reuse analysis algorithms. Following this, Sect. 3 provides an overview of the
compiler-enabled memory framework used for simulation and Sect. 4 shows the
experimental framework. Finally, Sect. 5 gives the experimental results gathered
through simulation, and we conclude with Sect. 6.

2 Compiler Analysis

The runtime biased (RB) pointer reuse analysis can be separated into a series
of three steps: RB pointer analysis, RB distance analysis, and RB reuse analysis.

RB Pointer Analysis is first applied in order to gather basic pointer informa-
tion needed to predict pointer access patterns. A flow-sensitive dataflow scheme
is used in our implementation. Flow-sensitive analysis maintains high precision
(i.e., the location set of each pointer access is determined in a flow-sensitive man-
ner even if based on the same variable). Our analysis is guided by reevaluating,
at each pointer dereference point, the (likely) runtime frequency of each location
a pointer can point to. For example, possible locations that are from definitions
in outer loop-nests are marked or not included when the pointer is dereferenced
in inner loops and if at least one new location has been defined in the inner loop.
Conventional analysis would not distinguish between these locations.

Precise conventional pointer analysis usually requires that the program in-
cludes all its source codes, for all the procedures, including static libraries. Oth-
erwise, the analysis cannot be performed. Precise conventional pointer analysis
is often used in program optimizations where conservative assumption must be
made - any speculation could result in incorrect execution.

In contrast, our approach does not require the same type of strict correctness.
If the behavior of a specific pointer cannot be inferred precisely, we can often
speculate or just ignore its effect. For example, if a points-to relation (or location)
cannot be inferred statically, we speculatively consider only the other locations
gathered in the pointer’s location set. We mark the location as undefined. When
assigning location sets for the same pointer at a later point in the CFG, one
could safely ignore/remove the undefined location in the set, if the probability of
the pointer accessing that location, at the new program point, is low (e.g., less
than 25% in our case).

The main steps of our RB pointer analysis algorithm are as follows: (1) build
a control-flow graph (CFG) of the computation, (2) analyze each basic block in
the CFG gradually building a PTG, (3) at the beginning of each basic block
merge location set information from previous basic blocks, (4) mark locations in
the location sets that are unlikely to occur at runtime, at the current program
point, as less frequent, (5) mark undefined locations or point-to relations; (6)
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repeat steps 2-5 until the PTG graph does not change (i.e., full convergence is
reached) or until the allowed number of iterations are reached.

Library calls that may modify pointer values and for which source codes are
not available are currently speculatively ignored. If a pointer is passed in as an
argument, its location set after the call-point in the caller procedure will be
marked as speculative, signaling that the location set of the pointer might be
incomplete after the call. In none of the programs we have analyzed we have
found library modified pointer behavior to be a considerable factor in gathering
precise pointer reuse information.

RB Distance Analysis gathers stride information for pointers changing across
loop iterations. This stride information is used to predict pointer-based memory
access patterns, and speculation is performed whenever the stride is not fixed. As
strides could change in function of the paths taken in the Control-Flow Graph
(CFG) of the loop body, only the most likely strides (based on static branch
prediction) are considered.

In the example shown in Fig. 1(a), the value of pointer p changes after each
iteration. In general, there are two ways to deal with this situation if implemented
as part of pointer analysis. Each element in the array structure could be treated
as a different location, or, another approach would be to treat the whole array
arr as a single location. The former is too complicated for compiler analysis
while the latter is not precise enough.

In our approach, as shown in Fig. 1(a), we first find the initial location for p.
Then, when we find out that p is changing for each iteration, we calculate the
distance (stride) between the current location and the location after modifica-
tion. If the distance is constant, we will use both the initial location and distance
to describe the behavior of the pointer.

Extracting stride information is not always easy. In Fig. 1(a), we can easily
calculate that the stride for pointer p is 4 bytes. However, for the example in
Fig. 1(b), the stride for pointer p is variable since we do not know what value
procedure foo() will return. In this case, we can use speculation based on static

……
int *p;
int arr[100];

p = &arr;
for(… i …){

*p = i;
p += 1;

}

……
int *p;
int arr[10];

p = &arr;
for(… i …){

*p = i;
p += foo(i);

}

(a) (b)

Fig. 1. Distance analysis examples: (a) static stride (b) variable stride
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information related to the location set to estimate the stride. For example, the
information we do know is (1) p points to array arr and (2) the size of array
arr is small. Based on this information, we can speculate that the stride of p is
small although we do not know the exact number.

Another example of stride prediction, as also mentioned earlier, is ignoring
strides that are less likely to occur at runtime based on static branch prediction.
Clearly, depending on which path is executed at runtime the stride of a pointer
might change across loop iterations, as not all the possible paths leading to that
pointer access are equally likely to occur.

RB Reuse Analysis attempts to discover those pointer accesses that have reuse,
i.e., refer to the same cache line. Reuse analysis uses the information provided by
the previous analyses to decide whether two pointer accesses refer to the same
cache line. Based on the reuse patterns, pointer accesses are partitioned into reuse
equivalence classes. Pointers in each equivalence class have a high probability of
referring to the same cache line during execution and will be mapped through
the static access path in the Cool-Mem system.

Reuse analysis for array-based accesses has been studied and used in [9, 15,
16]. For pointer-intensive programs, we use a classification scheme similar to
theirs, but we redefine it specifically in the context of pointer-based accesses.

1. Temporal Reuse: This is the case when a pointer is not changing during loop
iterations. This is the simplest case for loop-based accesses.

2. Self-Spatial Reuse: If a pointer is changing using a constant stride and the
stride is small enough, two or more consecutive accesses will refer to the
same cache line.

3. Group-Spatial Reuse: A group of pointers can share the same cache line
during each loop iteration even when they do not exhibit self-spatial reuse.

4. Simple-Spatial Reuse: This exists between two pointers that refer to the
same cache line but do not belong to any loop. Simple-spatial reuse is added
as a new reuse category because we find that this situation is important
for pointer-based programs although it is not as important for array-based
programs. The reason for this is that array structures are typically accessed
using loops, while pointer-based data structures are often accessed using
recursive functions.

Pointer-based memory accesses are partitioned into different reuse equiva-
lence classes based on the reuse classification and strides. A reuse equivalence
relation exists between two memory accesses if one of the above mentioned reuse
relations exists between them. Intuitively, each reuse equivalence class contains
those pointer accesses that have a good chance to access the same cache line.

Once we have the reuse equivalence classes, we use a reuse probability thresh-
old to decide which of the equivalence classes will likely have high cache line
reuse. All the accesses assigned to an equivalence class with a reuse probabil-
ity smaller than this threshold or not assigned to a class, will be regarded as
irregular. In our experiments, we choose the reuse threshold such that the stat-
ically estimated reuse misprediction rate is predicted to be smaller than 33%
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(the overall misprediction rate could be much lower depending on the mixture
of equivalence classes, but could also be larger due to the speculative nature of
the information this analysis is based on).

After RB reuse analysis, all the accesses which fall into one of the four reuse
categories are regarded as having good reuse possibility. Pointer accesses which
have bad locality and small reuse chances are identified as irregular accesses.

3 Application: Compiler-Managed Memory Systems

The results of run-time biased reuse analysis can be applied to general-purpose
compiler-enabled cache management systems. In this paper, we replicated a
compiler-enabled energy efficient cache management framework, Cool-Mem [2],
and extended it by incorporating our pointer reuse analysis techniques. We will
give a simple introduction of Cool-Mem architecture in this section, detail infor-
mation about Cool-Mem can be found in [2].

3.1 Cool-Mem Memory System

Figure 2 presents an overview of the Cool-Mem memory system, with integrated
static and dynamic access paths. Cool-Mem extends the conventional associative
cache lookup mechanism with simpler, direct addressing modes, in a virtually
tagged and indexed cache organization. This direct addressing mechanism elimi-
nates the associative tag-checks and data-array accesses. The compiler-managed
speculative direct addressing mechanisms uses the hotline registers. Static mis-
predictions are directed to the CAM based Tag-Cache, a structure storing cache
line addresses for the most recently accessed cache lines. Tag-Cache hits also
directly address the cache, and the conventional associative lookup mechanism
is used only on Tag-Cache misses.

The conventional associative lookup approach requires 4 parallel tag-checks
and data-array accesses(in a 4-way cache). Depending on the matching tag, one
of the 4 cache lines is selected and the rest discarded. Now for sequences of
accesses mapping to the same cache line, the conventional mechanism is highly
redundant: the same cache line and tag match on each access. Cool-Mem reduces
this redundancy by identifying at compile-time, access likely to lie in the same
cache line, and mapping them speculatively through one of the hotline registers
(step 1 in Fig. 2).

Different hotline compiler techniques are used to predict which cache accesses
are put into which hotline registers. A simple run-time comparison (step 2)
reveals if the static prediction is correct. The cache is directly accessed on correct
prediction (step 3), and the hotline register updated with the new information
on mis-predictions.

Another energy-efficient cache access path in Cool-Mem is the CAM-based
Tag-Cache. It is used both for static mis-prediction (hotline misses) and accesses
not mapped through the hotline registers, i.e. dynamic accesses (step 4). Hence
it serves the dual-role of complementing the compiler-mapped static accesses
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by storing cache-line addresses recently replaced from the hotline registers, and
also saving cache energy for dynamic accesses; the cache is directly accessed on
Tag-Cache hits(step 3).

Although the Tag-Cache access is very quick, we assume that the Tag-Cache,
accessed on hotline misses, require another cycle, with an overall latency similar
to a regular cache access. A miss in the Tag-Cache implies that we fall back to
the conventional associative lookup mechanism with and additional cycle perfor-
mance overhead (step 5). The Tag-Cache is also updated with new information
on misses. As seen in Fig. 2, each Tag-Cache entry is exactly the same as a
hotline register, and performs the same functions, but dynamically.

3.2 Cool-Mem Compiler

Cool-Mem compiler is responsible for identifying groups of accesses likely to
map to the same cache-line, and mapping them through one of the hotline reg-
isters. Hotline passes are implemented in two different compiler techniques: (1)
Optimistic Hotlines, where the compiler tries to map all accesses through the
hotline registers, and (2) Conservative Hotlines, which maps a subset of the ac-
cesses that are more regular in nature and as a result, are likely to cause fewer
mis-predictions. The description of both algorithms can be found in [2].
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Both the optimistic and conservative hotline approaches are not dealing with
pointer variables, because pointer information is unknown without pointer alias
analysis or points-to analysis. Runtime biased pointer reuse analysis results can
be applied easily in the context of the Cool-Mem architecture. Simply, pointer
accesses in reuse equivalence classes with reuse attributes larger than the reuse
threshold are mapped to static energy-saving cache access paths. At the same
time, irregular pointers identified during reuse analysis will be directed to regular
cache access paths to avoid energy and performance penalties.

4 Experimental Framework

The SUIF [13]/Machsuif [11] suite is used as our compiler infrastructure. RB
pointer and distance analysis is implemented as a SUIF pass which analyzes an
intermediate SUIF file and then writes the pointer and stride information back
as annotations. RB reuse analysis runs after the pointer analysis pass and writes
reuse equivalence class information to the SUIF intermediate file.

The source files are first compiled into SUIF code and merged into one file.
All high-level compiler analysis passes, including the pointer and reuse analysis
passes, operate at this stage. The annotations from SUIF files are propagated to
an Alpha binary file through the intermediate stages. We use the SimpleScalar [5]
simulator with Wattch [4] extensions for collecting performance and energy num-
bers. This simulator, capable of running statically linked alpha binaries, has been
modified to accommodate the Cool-Mem architecture.

We assume a 4-way in-order Alpha ISA compatible processor and 64 Kbyte 4-
way set-associative L1 caches, 0.18 micron technology, and 2.0V Vdd. We account
for all the introduced overheads and static mispredictions in the architecture as
described in [2].

We simulated a number of benchmarks during the selection process, including
SPEC 2000 [1], Olden pointer-intensive benchmark suite [10] and several bench-
marks used previously by the pointer analysis community [3, 6]. We chose seven
benchmarks (shown in Table 1) which contain at least 25% of pointer accesses
at runtime.

Table 1. Benchmarks used in simulation results

Benchmark Source Description
backprop Austin Neural network training
em3d Olden Elect. magn. wave propag.
ft Austin Minimum spanning tree
ks Austin Graph Partition
08.main McGill Polygon rotation
mcf SPEC2000 Combinatorial optimization
09.vor McGill Voronoi diagrams
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5 Results

In this section, we show experimental results for the above benchmarks, including
benchmark statistics as well as energy saving results collected using Wattch.

5.1 Regular Versus Irregular Pointers

Identifying those pointers which do not have good locality is important because
they normally result in energy and performance penalties when managed stati-
cally. Figure 3(a) shows the percentage of irregular pointers found during static
compiler analysis. Different programs have a different portion of irregular point-
ers. In some of them, such as main and em3d, up to 99% of all the pointers are
predicted as regular. Other programs like ft have almost 80% irregular accesses.

Figure 3(b) shows the misprediction rate of the pointers predicted when
mapped to the static cache access path. The misprediction rate refers to the
accesses that do not point to the cache line predicted. As shwon in the second
bar, the misprediction rate for irregular pointers, if mapped through the energy
efficient cache access path, is very high for most of the programs. It is at least
twice the misprediction rate of those pointers we identified as regular pointers.
The only exception is backprop, which operates on a relatively small data struc-
ture, such that all the pointer accesses have very good locality. However, we can
see that the misprediction rate for irregular pointers in backprop is still much
higher than those of regular pointers.

We also show the misprediction rate for the case when all the pointer accesses
are mapped through the static path. Note that the misprediction rate is signifi-
cantly reduced by removing the irregular pointer accesses. For em3d, the overall
misprediction rate is reduced by almost 50% while identifying only 1.7% of all
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Fig. 3. Regular versus irregular pointers: (a) runtime percentage of statically deter-
mined regular and irregular pointers; (b) Static misprediction rates of pointer accesses
when mapped to Cool-Mem’s static cache access path. Misprediction occurs when a
pointer that is predicted to have high reuse statically will not access the predicted
cache line at runtime
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Fig. 4. Normalized L1 D-cache energy consumption

the pointer accesses as irregular. We also identified almost 80% of all pointers
as irregular in ft, which have a misprediction rate greater than 95%.

5.2 Energy Savings

Figure 4 shows the energy consumption results which are normalized to the
unoptimized hardware baseline architecture. The baseline energy number, which
is shown as 100%, is the first bar. The second bar shows the normalized energy
consumption by applying the published Cool-Mem techniques without mapping
the pointer-based accesses through the statically managed cache access path.
Finally, the energy consumption number, which uses the results of our reuse
analysis for pointer-based accesses, is shown last. Compared to the optimization
which maps only array-based accesses, 4% to 31% extra energy reduction is
achieved on the L1 data cache energy consumption by mapping the pointer-based
memory accesses that are statically predicted as regular through the statically
managed cache access path.

6 Conclusion

Compiler-enabled cache management for pointer-intensive programs is challeng-
ing because pointer analysis is difficult and sometimes even impossible for large
or complex programs. By applying the runtime biased pointer analysis tech-
niques, we can always complete analysis for any pointer-intensive program with-
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out any constraints. The techniques proposed increase the fraction of memory
accesses that can be mapped statically to energy efficient cache access paths and
shows significant additional energy reduction in the L1 data cache.

Our future work includes further investigation and experiments on the run-
time biased pointer analysis approach and applying the analysis to other compiler-
enabled techniques such as compiler-directed prefetching on pointer-intensive
codes.
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Abstract. Compiler support for power and energy management has
been shown to be effective in reducing overall power dissipation and en-
ergy consumption of individual programs, for instance through compiler-
directed resource hibernation and dynamic frequency and voltage scaling
(DVS). Typically, optimizing compilers perform intra-program analyses
and optimizations, i.e., optimize the input program without the knowl-
edge of other programs that may be running at the same time on the
particular target machine. In this paper, we investigate the opportuni-
ties of compiling sets of programs together as a group with the goal of
reducing overall disk energy. A preliminary study and simulation results
for this inter-program compilation approach shows that significant disk
energy can be saved (between 5% and 16%) over the individually, disk
energy optimized programs for three benchmark applications.

1 Introduction

Handheld computers have come a long way from just being a sophisticated ad-
dress book and calendar tool. Handheld computers or pocket PCs feature rather
powerful processors (e.g. 400MHz XScale), 64MB or more of memory, wireless
Ethernet connections, and devices such as cameras, speakers, and microphones.
They are able to run versions of standard operating systems such as Linux and
Windows. However, as compared to their desktop PC counterparts, pocket PCs
have significantly less resources, in particular power resources, and less com-
putational capabilities. While pocket PCs will evolve further in terms of their
resources and capabilities, they will always be more resource constrained than
the comparable desktop PCs, which will evolve as well. As a result, users of
pocket PCs have to be more selective in terms of the programs that they wish to
store and execute on their handheld computer. Such a program set may include
a web browser, an mpeg player, communication software (e.g. ftp), a voice recog-
nition system, a text editor, an email tool, etc. Typically, a user may only run
a few of these programs at any given point in time. Figure 1 shows an example
of possible subsets of programs executing simultaneously on a handheld PC or
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PDA. Only program combinations that occur frequently or are considered im-
portant are represented as explicit states. For example, running a web browser,
an audio player, and an email program at the same time may occur frequently
enough to promise a benefit from inter-program analysis and optimizations. State
transitions are triggered by program termination and program activation events.
The state marked ”???” is a catch-all state that allows internal transitions and
represents all combinations of simultaneous program executions that are not con-
sidered interesting enough to be analyzed and optimized as a group. The graph
shows the underlying assumption of our presented work, namely that a typical
usage pattern of a handheld PC or PDA can be characterized by a limited num-
ber of program subsets where the programs in a subset are executed together.
This makes optimizing particular states or program combinations feasible. The
graph can be determined through program traces or other means. Techniques
and strategies to determine such a graph are beyond the scope of this paper.

web browser

email

game

audio player

video player

phone

 ???

Fig. 1. Example finite state machine. Nodes represent subsets of applications executing
simultaneously. Transitions are triggered by program activation and termination events.
The catch-all state marked ”???” allows internal transitions and represents all non-
interesting program combinations

A compiler is able to reshape a program’s execution behavior to efficiently
utilize the available resources on a target system. Traditionally, efficiency has
been measured in terms of performance, but power dissipation and energy con-
sumption have become optimization goals in their own right, possibly trading-off
power and energy savings for performance. One effective technique to save power
and energy is resource hibernation which exploits the ability of devices to switch
between different activity states, ranging from a high activity (active) to a deep
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sleep state. As a rule of thumb, the lower the activity state, the more power and
energy may be saved, but the longer it will take to bring back the device into
the fully operational, active state. Each transition between an activity state has
a penalty, both in terms of performance and power/energy.

An energy-aware compiler optimization can reshape a program such that the
idle times between successive resource accesses are maximized, giving opportu-
nities to hibernate a device more often, and/or in deeper hibernation states.
This compilation strategy has been shown to work well in a single process
environment[1, 2], but may lead to poor overall results in a multiprogramming
environment. In a multiprogramming setting, one program may finish accessing
a resource and direct the resource to hibernate during some time of idleness.
During this time, a second program needs to access the resource. In the worst
case, each program alternately accesses a resource such that the resource never
experiences significant amounts of idleness. In effect, one program’s activity pat-
tern interferes with another program’s idle periods and vice versa. To alleviate
this problem, some inter-program or inter-process coordination is necessary.

Operating systems techniques such as batch scheduling coordinate accesses
to resources across active processes. Requests for a resource are grouped and
served together instead of individually, potentially delaying individual requests
for the sake of improved overall resource usage. In contrast to operating systems,
compilers have often the advantage of knowing about future program behavior
and resource requirements. Instead of reacting to resource requests at runtime,
a compiler can insert code into a set of programs that will proactively initiate
resource usage across the program set at execution time. This is typically beyond
the ability of an operating system since it requires program modifications and
knowledge about future resource usage.

In this paper, we investigate the potential benefits of an inter-program opti-
mization strategy for disk power and energy management. This paper focuses on
a compiler/runtime library based approach, although an OS only, or a combined
OS and compiler approach is also possible. An initial study of a compiler only
vs. OS only strategy for inter-program optimizations is currently underway.

By considering multiple programs, the compiler applies a synchronization
optimization which we call inverse-barrier. Previous work has shown that appli-
cations which read data from disk in a streamed fashion (i.e., periodic access)
can utilize large disk buffers to save energy[1]. These disk buffers are local to each
application and serve to increase the idle period between disk accesses. Hence
each application has a unique disk access interval associated with the size of
its buffer. Having longer intervals between disk accesses creates opportunities to
hibernate the disk. This intra-program optimization works well for applications
running in isolation, but when multiple such applications execute simultane-
ously, some of the intra-program optimization’s effects are negated. That is, the
disk idle period of one application is interrupted by a disk access from another
application. This will occur whenever the intervals between accesses by multiple
applications are different.
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Simulation experiments using physical traces of three intra-program opti-
mized applications show significant energy savings when applying the inverse-
barrier optimization. The inverse-barrier also proves more effective at saving
energy and maintaining performance than using barrier synchronization.

2 Related Work

This research is related to a few OS level techniques. In order for inter-program
compilation to be useful, it should apply optimizations which span across ap-
plications. The initial idea began from the notion of a programming mechanism
called a barrier to delay disk accesses in order to cluster them as well as in-
crease the idle time between accesses. To be useful, the OS must support such
a programming paradigm with a scheduling policy. Indeed, co-scheduling is one
example and a well-known technique for scheduling processes in a distributed
group at the same time[3]. One aspect is to schedule associated processes at
the same time thereby letting processes make progress within their scheduled
timeslot. Since our work relies on idleness to save energy, we desire processes
to synchronize by scheduling their resource accesses together and maximizing
idleness.

Our mechanism for synchronizing accesses, inverse-barrier, is similar to im-
plicit coscheduling for distributed systems[4]. Dusseau et al. introduce a method
for coordinating process scheduling by deducing the state of remote processes
via normal inter-process communication. The state of a remote process helps the
local node determine which process to schedule next. Inverse-barrier applies this
idea to coordinate resource accesses by multiple processes on a single system.

More recently, Weissel et al. developed Coop-I/O to address energy reduction
by the disk[5]. Coop-I/O enables disk operations to be deferrable and abortable.
By deferring operations, the OS may batch schedule them at a later time until
necessary. The research also shows some operations may be unnecessary and
hence the abortable designation. However, the proposed operations require ap-
plications to be updated by using the new I/O function calls. In contrast, our
technique utilizes compiler analysis to determine which operations should be re-
placed. The modification cost is consolidated to the compiler optimization and
a recompile of the application.

In terms of scheduling paradigms, this work resembles basic ideas from the
slotted ALOHA system[6, 7]. The essential idea is to schedule access between
multiple users to a common resource (e.g. radio frequency band) while elimi-
nating collisions or when multiple host transmit on the same frequency at the
same time. For our purposes, a collision takes on almost the opposite notion of
a disk request without any other requests close in time. Rather than scheduling
for average utilization of the disk, optimizing for energy means scheduling for
bursts of activity followed by long periods of idleness.

A form of inter-program compilation has been applied to a specific problem
of enhancing I/O-intensive workloads[8]. Kadayif et al. use program analysis
to determine access patterns across applications. Knowledge of access patterns
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allows the compiler to optimize the codes by transforming naive disk I/O into
collective or parallel I/O as appropriate. The benefit manifests as enhanced
I/O performance for large, parallel applications. We aim to construct a general
framework suitable for developing resource optimizations across applications to
reduce energy and power consumption.

3 Intra- Versus Inter-program Optimizations

Handheld computing devices may be designed as general purpose, yet each user
may desire to run only a certain mix of applications. If this unique set of ap-
plications remains generally unchanging, compiling the set of applications to-
gether with inter-program scheduling can enhance performance and cooperation
by synchronizing resource usage. A further goal is to show how new energy op-
timizations may be applied for resource management.

Consider a scheduling paradigm across programs on a single processor. The
proposed optimizations augment the paradigm with user-transparent barrier and
inverse-barrier mechanisms to resemble thread scheduling. Barrier semantics en-
force the notion that processes or threads (within a defined group) must pause
execution at a defined barrier point until all members of the group have reached
the barrier. The notion of an inverse-barrier applies specifically to resources.
That is, when a process or thread reaches an inverse-barrier (e.g. by accessing a
resource), all members of the group are notified to also access the resource. Syn-
chronizing resource accesses eliminates any pattern of random access and allows
longer idle periods where the resource may be placed in a low power hibernation
mode.

An example of an intra-program optimization is a transformation to create
large disk buffers in memory thereby increasing the disk’s idle time for hiberna-
tion. While application transformations have been shown to benefit applications
executed in isolation[1], running such locally optimized programs concurrently
squander many of the benefits because the access pattern from each process dis-
rupts the idle time of the resource. This intra-program optimization considers
each program by itself while an inter-program optimization now considers all
programs in a group and augments them to cooperate in synchronizing accesses
to a resource.

Program cooperation can be accomplished in at least two ways: (1) delay
resource access until all group members wish to use it or (2) inform all group
members to use the resource immediately. The first method is similar to a barrier
mechanism in parallel programming and can be used by programs which lack
deadlines. The second method has the notion of an inverse-barrier and can be
used by programs with deadline constraints such as real-time software.

Programs using a barrier cooperate in a passive fashion. When a program
wants to access a resource, it will pause and wait until all members in its group
also wish to access the resource. When all members reach the barrier, then
they all may access the resource consecutively. To avoid starvation, each waiting
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process has a timer. If the timer expires, the process will proceed to access the
resource.

Programs using an inverse-barrier cooperate actively to synchronize resource
accesses. When a program needs to access a resource, it will notify all members
in its group to also access the resource immediately. This has the effect of refill-
ing a program’s disk buffer earlier than necessary which ensures that deadlines
are satisfied. This synchronization mechanism can be communicated via signals
among all processes. Only those processes with an appropriately included signal
handler will follow suit in accessing the resource. Uninterested processes may
simply ignore the signal.

The signal mechanism is also used in our current compilation framework to
inform active programs about other active, simultaneously executing programs.
The compiler generates signal handling code within each program that imple-
ments state transitions between interesting groups of applications. Each time a
program is about to terminate, it sends a signal to inform other active processes
about its termination event. The appropriate signal handlers in the remaining
active programs will then make the corresponding state transition. Each time
a program begins execution, it sends a signal to inform other active programs
about its presence. In return, active programs will send a signal informing the
”new” process about the state that they are in, i.e., inform the program about its
current execution group. This way, a program is aware of its group execution con-
text, and can perform appropriate optimizations in response to inverse-barrier
signals.

4 Experiments and Results

This benefit analysis builds upon previous work and examines three streaming
applications mpeg play, mpg123, and sftp. The MPEG video and audio decoders
are examples of real-time applications where they must have low latency access
to the disk. They cannot afford to wait for other applications before accessing
the disk. On the other hand, ftp is a silent process, mostly invisible to the user,
and can tolerate pauses with the understanding that throughput performance is
traded off with energy savings.

From these three applications, there are three experiments with interesting
results: 1) all three applications, 2) video with audio, 3) audio with ftp. Com-
bining video with ftp is expected to produce similar results as (3). Although the
original experiments operated on the same file, each run produced slightly differ-
ent traces because of the dynamic nature of the disk profiling at program startup.
However, the variance from each set of runs was minor and demonstrates the
stability of the profiling strategy. All experiments used disk traces from Heath
et al.[1] for hand simulating the behavior of these programs executing at the
same time with and without inter-program optimizations applied.

The disk traces were modified to better simulate the more interesting, steady
state conditions while the applications are running simultaneously. The dura-
tion of the traces from the three programs vary considerably. For example, the
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trace for mpg123 lasted 425 seconds while mpeg play and sftp were 106 and
232 seconds, respectively. The shorter traces were extended to be roughly time
equivalent to mpg123. Since each program was optimized to produce periodic
disk accesses, extending the execution time is merely a matter of using larger
data files. Hence, the traces were extended by “copying and pasting” multiples
of disk access periods.

A second modification deals with the buffer sizes. The buffer size is calculated
at runtime after some profiling steps. A prudent calculation would divide the
buffer size by n where n is the number of applications compiled with this disk
buffer optimization. Otherwise, if all applications used its maximums buffer size,
thrashing may occur when such applications are actually executed together.
Thus, the disk access intervals for each application was divided by either 2 or 3
for the experiments.

These particular applications lightly stress the CPU, and the experiments
assume that the CPU meets all deadlines (e.g. decoding frames) for all applica-
tions running simultaneously. The CPU can decode all frames of video and audio
while copying blocks of data for file transfer without degrading performance. De-
graded performance might result in dropped frames. However, the physical disk
is constrained to serving one process at a time. Thus, if more than one process
issues a disk request at the same time, they will be queued and interleaved. In
effect, disk access time by processes cannot be overlapped and hidden.

The results of these experiments are closely tied to system parameters. A
different disk will change the mix of thresholds in determining when to switch
power states, but the essential premise is the potential to save energy by utilizing
low power states. Table 1 summarizes the parameters measured on a real disk[1].
When transitioning from idle to standby, the disk spends 5.0 seconds in the
transition state. When waking up from standby to idle or read, the disk takes
1.6 seconds. The idleness threshold at which transitioning to standby becomes
profitable is 10.0 seconds. That is, when the system knows the next disk access
is greater than 10.0 seconds, the system should tell the disk to transition to
standby.

Table 1. Disk states and power levels

Disk States Power (W)
wakeup 3.0
read 1.8
idle 0.9
transition 0.7
standby 0.2

The first experiment combines all three applications. The respective disk ac-
cess periods are Pmpeg play = 11.7, Pmpg123 = 13.7, and Psftp = 23.5; all times
in seconds. Figure 2 shows the disk access traces of each application. The top
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Fig. 2. Disk access traces for mpeg play, mpg123, and sftp

inv-barrier

combined
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mpeg_play & mpg123 & sftp

Fig. 3. Running all three applications simultaneously. Comparison of disk access pat-
terns with inverse-barrier optimization for synchronization. Inverse-barrier scheduling
saves 5.4% energy

row of Figure 3 shows an overlay of all disk accesses. The bottom row shows
the synchronization when using inverse-barrier scheduling. Net energy savings is
5.4%.

The second experiment combines mpeg play with mpg123. The disk access pe-
riods are Pmpeg play = 17.6 and Pmpg123 = 20.6. Figure 4 illustrates the idleness
interference patterns of just two applications vs. inverse-barrier synchronization.
A similar pattern can be seen with the third experiment in Figure 5. Here, the
disk access periods are Pmpg123 = 20.6 and Psftp = 35.2. The energy saved in
these two experiments are 15.9% and 9.8%, respectively.

There is a key difference between the inverse-barrier and barrier mechanisms.
An OS may employ a barrier mechanism to delay resource accesses for appli-
cations which can tolerate such latencies. For example, sftp has few constraints
about deadlines since it operates by best effort semantics over an unreliable net-
work. If an OS uses this assumption to schedule sftp with barriers at disk accesses
(i.e., delaying until next access by another application), there will certainly be a
performance delay. This mode of operation can still save energy by batching the
disk access but also depending on how much delay is involved. The difference
with inverse-barrier is the pre-emptive action to ensure that buffers are always
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Fig. 4. Comparison of two applications’ (mpeg play, mpg123) disk access patterns.
Inverse-barrier scheduling saves 15.9% energy

inv-barrier

combined

0 50 100 150 200 250 300 350 400 450
Time (seconds)

mpg123 & sftp

Fig. 5. Comparison of two applications’ (mpg123, sftp) disk access patterns. Inverse-
barrier scheduling saves 9.8% energy

sufficiently full. At every synchronized disk access, each process can check the
data capacity of its buffer and decide whether to read more data. Another opti-
mization during the buffer check might compute the differential between resource
access periods. For instance, if a process has a resource access period more than
twice as long as the current period, it can afford to skip every other resource
access and maintain a non-empty buffer.

The last experiment explores the behaviors of barrier scheduling; Figure 6
illustrates the difference. In terms of execution time, sftp finishes over two min-
utes later using the barrier vs. the inverse-barrier. Compared to the baseline of
running all applications together under normal scheduling, the barrier method
expends 2.4% more energy. Barrier scheduling is only slightly more expensive in
energy yet can impact performance. In this case, sftp’s performance is delayed
by 31.4%. Under inverse-barrier scheduling, there is no performance loss while
showing modest energy savings.
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barrier

inv-barrier
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Fig. 6. Comparison of intra-program buffered I/O optimizations, with inter-program
inverse-barrier scheduling, and with barrier scheduling on sftp. Barrier scheduling
causes sftp to finish 132 seconds later, a 31.4% performance delay, while using 2.4%
more disk energy overall

5 Analysis of Potential Energy Savings

Investigating the upper bounds on energy savings gives an indication whether
this avenue of research is worthwhile. Exploring the involved parameters can pro-
vide insights into how this technique is beneficial. Towards that end, consider a
situation of two programs, A and B, optimized to exhibit periodic resource ac-
cess behavior. Inter-program compilation with inverse-barrier scheduling results
in our optimized execution, but how much can it possibly save over the previous
intra-program optimization, which has already shown large disk energy savings?
We can approximate this with an analytical examination of the cases where
the intra-program execution deviates from the optimal case where all programs
access a resource at the same time (i.e., in batch mode). Our inter-program op-
timization results in such an optimal case. Thus, the difference represents the
potential energy savings.

Refer to Table 2 for a list of involved parameters. The following description
of these parameters are illustrated in Figure 7. Hence, PA and PB represent the
period between resource accesses by programs A and B; assume PA

2 < PB < PA

and let ΔP = PA − PB . Each program accesses the resource for an amount of
time, RA and RB . The rise and fall in the graphs of programs A and B merely
indicate a resource access. Only one resource is considered, so its corresponding
hibernation threshold time will be designated simply H. If a resource will be idle
for at least H, then hibernation will be beneficial and assumed to be initiated.
Consequently, we assume min(Pi) > H; otherwise any chance for hibernation is
gone.

There are three ways to categorize the resource access patterns, demonstrated
by the three accesses of A (A1, A2, A3) along with the four accesses of B (B1,
B2, B3, B4). A1 is optimal because it is clustered with B1. Since the resource will
not be used again within H of A1, hibernation may be initiated immediately.
A2 is sub-optimal because it occurs within H of B2. The accesses are mildly
offset, and the resource consumes extra energy by remaining in the idle power
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Table 2. Analytical parameters

Variable Description
Pi resource access Period of program i
Ri length of access (Read) time by program i
Hi Hibernation threshold of resource i
Ei average Energy use in case i

PR

Time

B

A

H

Fig. 7. Resource access patterns of programs A and B

state. A3 is out-of-phase because it occurs after H of B3, and B4 occurs after
H of A3. The effect is that B3’s and A3’s hibernation periods are immediately
interrupted. There is little opportunity to save energy during the respective
hibernation periods. The next question is, what percentage of time do each of
the three cases occur?

The optimal case, opt, can be expected to occur ΔP
PB

% of the time. If A and B
have a synchronized access, then each respective access afterward will be offset by
ΔP . They will coincide again after PB

ΔP accesses. The sub-optimal case is expected
to occur sub-opt = (max( 2H

PB
, 1) − opt)% of the time. The first term refers to

all accesses within H of an access, including the optimal case. Subtracting the
optimal case gives just the sub-optimal case. Lastly, the out-of-phase case occurs
out = (1 − (opt + sub-opt))% of the time, or simply the remaining percentage of
time after subtracting the optimal and sub-optimal cases.

The next step toward estimating potential energy savings is calculating the
average energy consumed during the three cases and computing the differences.
The energy usage for each case can be obtained from a power consumption profile
which is a simple graph showing the amount of time spent in the various power
states. In the non-optimal cases, there may be many instances of the graphs
corresponding to different timing offsets between accesses. These are averaged
to produce one profile graph for each of the sub-optimal and out-of-phase cases.
Figure 8 shows what a sample power profile may look like. The average energy
usage of each case, Ei, is now a matter of summing the power levels over time.

Finally, with the average energy use of all three cases (Eopt, Esub−opt, Eout),
an upper bound on potential energy savings can be computed. Energy savings
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Fig. 8. Sample power profile graph

over the sub-optimal case is ΔEsub−opt = Esub−opt − Eopt, and the out-of-phase
case is ΔEout = Eout − Eopt. These cases occur sub-opt and out percent of the
time. Thus, the upper bound is (sub-opt ∗ ΔEsub−opt

Eopt
) + (out ∗ ΔEout

Eopt
). Applying

this analysis to the experiment of running mpeg play and mpg123 together un-
der inter-program optimization, the upper bound is estimated at 26.2% while
actual savings is 15.9%. The upper bound can never be reached because of the
small overhead involved during program startup for profiling to initialize the
disk buffers. For this experiement, the startup overhead accounted for 5.8% of
the total execution time.

6 Summary and Future Work

Inter-program optimization is a promising new compilation strategy for sets of
programs that are expected to be executed together. Such sets occur, for in-
stance, in resource restricted environments such as handheld, mobile comput-
ers. Resource usage can be coordinated across all programs in the set, allow-
ing additional opportunities for resource hibernation over single program, i.e.,
intra-program, optimizations alone. This paper discussed the potential benefits
of inter-program analysis using the disk as the resource. An analysis of energy
savings and simulation results for a set of three benchmark programs show that
further significant energy savings over intra-program optimizations (between 5%
and 16% for the simulations) can be achieved.

The compiler and OS have unique perspectives on key parts of the entire re-
source management scheme. We hope to experimentally explore and discover the
strengths from each, then apply them in developing a resource-aware compiler
and OS system. A current study is trying to assess the advantages and disadvan-
tages of a compiler-only; compiler and runtime system; OS-only; and compiler,
runtime system and OS approach to inter-program resource management. We
will also be using physical measurements to guide and validate our development
efforts.



Inter-program Compilation for Disk Energy Reduction 25

References

1. Heath, T., Pinheiro, E., Hom, J., Kremer, U., Bianchini, R.: Application transfor-
mations for energy and performance-aware device management. In: Proceedings of
the Conference on Parallel Architectures and Compilation Techniques. (2002) Best
Student Paper Award.

2. Delaluz, V., Kandemir, M., Vijaykrishnan, N., Irwin, M., Sivasubramaniam, A.,
Kolcu, I.: Compiler-directed array interleaving for reducing energy in multi-bank
memories. In: Proceedings of the Conference on VLSI Design. (2002) 288–293

3. Ousterhout, J.: Scheduling techniques for concurrent systems. In: Proceedings of
the Conference on Distributed Computing Systems. (1982)

4. Arpaci-Dusseau, A., Culler, D., Mainwaring, A.: Scheduling with implicit informa-
tion in distributed systems. In: Proceedings of the Conference on Measurement and
Modeling of Computer Systems. (1998) 233–243

5. Weissel, A., Beutel, B., Bellosa, F.: Cooperative I/O — a novel I/O semantics for
energy-aware applications. In: Proceedings of the Conference on Operating Systems
Design and Implementation. (2002)

6. Abramson, N.: The ALOHA system — another alternative for computer communi-
cations. In: Proceedings of the Fall Joint Computer Conference. (1970) 281–285

7. Roberts, L.: ALOHA packet system with and without slots and capture. Computer
Communications Review 5 (1975) 28–42

8. Kadayif, I., Kandemir, M., Sezer, U.: Collective compilation for I/O-intensive pro-
grams. In: Proceedings of the IASTED Conference on Parallel and Distributed
Computing and Systems. (2001)



 

B. Falsafi and T.N. Vijaykumar (Eds.): PACS 2003, LNCS 3164, pp. 26–40, 2004. 
© Springer-Verlag Berlin Heidelberg 2004 

Energy Consumption in Mobile Devices: 
Why Future Systems Need Requirements–Aware Energy 

Scale-Down 

Robert N. Mayo and Parthasarathy Ranganathan 

Hewlett Packard Labs, 
1501 Page Mill road MS 1177, 

Palo Alto California 94304 
{Bob.Mayo,Partha.Ranganathan}@hp.com 

Abstract.  The current proliferation of mobile devices has resulted in a large 
diversity of designs, each optimized for a specific application, form-factor, bat-
tery life, and functionality (e.g., cell phone, pager, MP3 player, PDA, laptop). 
Recent trends, motivated by user preferences towards carrying less, have fo-
cused on integrating these different applications in a single general-purpose de-
vice, often resulting in much higher energy consumption and consequently 
much reduced battery life. This paper argues that in order to achieve longer bat-
tery life, such systems should be designed to include requirements-aware en-
ergy scale-down techniques. Such techniques would allow a general-purpose 
device to use hardware mechanisms and software policies to adapt energy use 
to the user’s requirements for the task at hand, potentially approaching the low 
energy use of a special-purpose device.  We make two main contributions. We 
first provide a model for energy scale-down. We argue that one approach to de-
sign scale-down is to use special-purpose devices as examples of power-
efficient design points, and structure adaptivity using insights from these design 
points. To understand the magnitude of the potential benefits, we present an en-
ergy comparison of a wide spectrum of mobile devices (to the best of our 
knowledge, the first study to do so).  A comparison of these devices with gen-
eral-purpose systems helps us identify scale-down opportunities. Based on these 
insights, we propose and evaluate three specific requirements-aware energy 
scale-down optimizations, in the context of the display, wireless, and CPU 
components of the system. Our optimizations reduce the energy consumption of 
their targeted subsystems by factors of 2 to 10 demonstrating the importance of 
energy scale-down in future designs. 

1   Introduction 

Recent advances in computing and communication have led to increased use of a 
large number of mobile computing devices. These devices have many purposes and 
form-factors including both general-purpose devices like laptops, pocket PCs, and 
palm computers as well as specialized devices like portable MP3 players and e-mail 
pagers.  Both form factor and energy are critical resources for all these devices, forc-
ing users to trade away functionality to gain smaller form factors and longer battery 
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lifetimes. A variety of such tradeoffs exist for many specific tasks.  For instance, the 
email task can be accomplished with a feature-rich and high-energy application like 
Microsoft Outlook running on a laptop, or a reduced-feature low-energy application 
like a Blackberry email pager1.  

The drive for small form factors is strong, resulting in users demanding the most 
value from a given form factor.  The popularity of camera/cell phone combinations 
are examples of multiple applications in a single device, with a consequent reduction 
in overall form factor when compared to the sum of two separate devices.  Most suc-
cessfully-converged products combine applications with similar hardware and soft-
ware requirements.  In our example, both cameras and cell phones can share a proces-
sor with limited computational power, a common display, and a small set of input 
buttons.  But different applications inherently have some mismatch.  Higher-
resolution color displays are needed on camera/phone combinations compared to 
stand-alone mobile phones, leading to increased energy use even when only using the 
phone portion of the device. 

Perhaps the best examples of this mismatch are in general-purpose devices like 
PDAs.  These devices can run a wide range of software and accept a wide range of 
hardware cards.  Thus, they would appear to be the ultimate device for handheld con-
vergence.  But this generality currently comes at the cost of high energy use, making 
the devices much less attractive.  The main reason for this is the lack of adaptability in 
the hardware and software energy use. 

Consider a comparison of two email applications: feature-rich email software run-
ning on a high-end handheld computer versus an email pager. Both handle the email 
task well, but with different tradeoffs between functionality and battery life. In the case 
of the pager, users want long battery life, notification of incoming email, and an accept-
able screen for text.  Much less important is the ability to view color photographs or 
read attached files. If the user of a handheld computer desires the reduced features and 
longer battery life, it is largely unobtainable. It simply is not possible to run a pager-like 
application on a high end handheld computer and get pager-like battery life. 

Application-specific devices like cell phones, email pagers, and MP3 players are 
examples of highly successful tradeoffs of functionality, form-factor, and battery life.  
Their success proves them to be excellent points in the design space, in that users find 
high value in them.  As such, they can serve as benchmarks against which we can 
compare general-purpose devices.  A truly general-purpose device should strive to 
emulate these design points, including not only the specific functionality but also the 
battery life.   

While there are many technical challenges, requirements-aware energy scale-down 
is an approach that can yield improvements.  The idea is to have both hardware and 
software that can scale their features and energy use to meet a variety of design points.  
For high functionality, hardware and software would present a rich set of features to 

                                                           
1 In this paper, we use the terminology task to mean a broad category, such a music listening 

task or an email task. A specific set of hardware and software to accomplish this task is 
called an application, and involves various tradeoffs of functionality, battery life, and form 
factor.  For instance, the music listening task could be accomplished using either a PDA or a 
tiny MP3 player. 
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the user, at the cost of higher energy use.  At the low end, hardware and software 
would scale their functionality to match a popular low-end design point, resulting in 
lower energy use.  Specifically, we recommend considering each component in the 
general-purpose device and comparing it to the requirements of the applications using 
that device. Ideally, each general-purpose component should be capable of scaling 
down its energy use to match the design point used by the application with the lowest 
requirements. There are two alternatives for achieving this: gradation-based scaling, 
where the component itself has a wide range of adaptability, or plurality-based scaling, 
where the device chooses among multiple components with different properties. We 
suggest that a good way of determining mismatches in the component’s functionality 
and the task requirements for a general-purpose device is to use as reference the com-
ponent’s functionality in a special-purpose device targeted at that application.   

The rest of the paper is organized as follows. The next section of the paper (Section 
2) further discusses the need for and potential from energy scale-down. In particular, 
it characterizes the energy costs of convergence and illustrates how the design of spe-
cial-purpose devices can help identify energy scale-down methods in general-purpose 
devices. As a way of validating our energy scale-down approach, Section 3 proposes 
three specific scale-down optimizations in the context of the display, wireless, and 
processor components of the system and shows how they can significantly enhance 
battery life. Section 4 concludes the paper. 

2   Energy Scale-Down 

2.1   Energy Costs of Convergence 

To validate the hypothesis that special-purpose devices are low-energy devices when 
compared with converged or general-purpose devices, we measured the energy use of 
a broad range of devices used for different tasks.   

2.1.1   Methodology 
We are not aware of any other previous work that has performed such a broad com-
parison of mobile devices for such a wide range of mobile tasks. Consequently, we 
have had to make a number of choices when designing our experimental methodol-
ogy. Of the large design space possible for a study like ours, we chose to focus on 
quantifying the wide range of energy usage per task. We chose our tasks to be repre-
sentative of the typical activities mobile users would perform. We focused on com-
mercial products optimized for one or more of these tasks.  

Devices: Figure 1 summarizes the key characteristics of the devices that we use. The 
individual devices we consider include a laptop, a handheld, a cell phone, a high end 
pager, a high-end MP3 player, a low-end MP3 player, and a small “memo” voice re-
corder. Unless otherwise noted, all the units were set to default settings. The laptop 
and handheld were set to never turn off. Also, given that the backlight for the hand-
held chosen is relatively unique in the handheld market (with power consumption 
atypical of other handhelds in the market), we performed all our experiments with the 
backlight set to minimum power mode.   



Energy Consumption in Mobile Devices 29 

 

C lass: D evice C P U Sto rage D isplay Wireless Interfaces OS

Laptop: Compaq 
Armada M 300 

600 M Hz 
Pentium II 

256 M B RAM , 12 
GB disk 

1024x768, 12.1”  
TFT

Lucent 
WaveLAN Gold 
PCM CIA, IEEE 
802.11

full-function keyboard, 
speaker, mic., stereo 
audio-output jack, and 
others

Win XP Pro

Handheld: Compaq 
iPAQ 3630

206 M Hz 
Intel 
Strong 
ARM

32 M B RAM , 32 
M B ROM

240x320 2.26”  
TFT display

Same as laptop touchscreen 
interface, speaker, 
microphone, stereo 
audio-out jack

Pocket PC

Cell phone: Nokia 
8260

not in 
spec 

not in spec 73x50, 1.2” x0.8”  
monochrome 
LCD+backlight

AT&T wireless GSM -like headset 
jack, vibration 
notification and audio 
output

Proprietary

High-end pager: 
Blackberry W1000

Intel 386 
(M Hz not 
in spec)

4 M B flash, 512 
KB SRAM

8-line (x28 char) 
LCD+backlight

Tx 
frequency:896-
902 M Hz; Rx 
freq: 935-
941M Hz

Trackwheel, 31-key 
qwerty keypad, tone 
and vibration 
notification

Proprietary

Low-end M P3: 
Compaq iPAQ PA-1

not in 
spec 

two 32M B flash 
card

7x66, 1” x0.4”  LCD 
+backlight

None Buttons Proprietary

High-end M P3: 
Nomad jukebox 
(DAP-6G01)

not in 
spec 

8M B DRAM , 
6GB disk

132x64 
LCD+backlight

None Stereo headphone 
jack 

Proprietary

Voice recorder: 
VoiceIt VT-90

not in 
spec 

not spec (max. 
record time of 90 
sec)

None None Buttons Proprietary

 

Fig. 1. Devices evaluated in power comparison study 

Task Description
Email The benchmark tries to  capture typical activit ies asso ciated with an email applicatio n. The 

f irst co mpo nent (Rcv) captures the po wer fo r receiving messages and the po wer fo r the 
no tif icatio n events. A n auto matic script fro m a remo te machine sends o ut two  sets o f 10 
messages separated by a pause. A ll vo lumes are set to  maximum and v ibrate-mo de, if any, 
is  turned o n. The seco nd benchmark (Reply) includes aspects o f reading, co mpo sing, and 
sending messages.The benchmark mo dels seven fo rwards and o ne s ingle-line reply.  The 
messages cho sen include a 10KB  HTM L anno uncement and a 4KB  text message. 

M P 3 This benchmark measures the po wer co nsumed to  play the first two  minutes o f a 6.44M B  
M P 3 so ng reco rded at a bit rate o f 192 Kbps. The default Windo ws M edia P layer was used 
to  play the so ng o n the lapto p and handheld; the high-end and lo w-end M P 3 players had 
pro prietary interfaces to  play the so ng. P o wer readings were taken with the same set o f 
headpho nes fo r all the appliances. A ddit io nally, when available, the po wer was also  
measured with the speaker (fo r the lapto p and the handheld). In these cases, the po wer was 
measured with the vo lume set to  maximum.

Web bro wsing The web bro wsing benchmark included co nnecting to  an external link with a large number o f 
embedded images. The benchmark refreshes the page o nce the page is do wnlo aded. A ll 
experiments were perfo rmed at s imilar times to  minimize netwo rk effects. 

Text no tes 
taking

This benchmark included the first two  minutes o f typing in the rules fro m the table o f 
co ntents o f “ The Elements o f Style”  by Strunk and White, by an o perato r familiar with the 
user interface. 

A udio  no tes 
taking

Fo r this benchmark, we read o ut lo ud the f irst 9 rules fro m the table o f co ntents o f the 
same bo o k as abo ve o ne at a t ime and played back the reco rdings o ne at a time. 

Two -way 
messaging

We designed two  benchmarks to  capture the activ ities asso ciated with messaging fo r a 
mo bile user. The f irst benchmark stresses instant text messaging , while the seco nd 
benchmark stresses vo ice chats (o r pho ne co nversatio ns) . In bo th these cases, we 
fo llo wed a pre-determined script. In o rder to  capture the po wer co nsumptio n o f no tif icatio n 
events (audio  o r vibratio n alerts), we began the co nversatio n with a request into  the 
measured device and then o ne minute into  the messaging, we disco nnected the 
co nversatio n and began ano ther co nversatio n, this time init iated by the measured device. 
A s befo re, we assumed reaso nable skills  with the user interfaces, and all vo lume co ntro ls 
were set to  maximum. Fo r the windo ws enviro nments (lapto p and handheld), we used M SN 
messenger fo r the text and vo ice chats.  

Fig. 2. Tasks evaluated in power comparison study 
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Tasks: Figure 2 summarizes the key tasks that we studied. The tasks we consider in-
clude email handling (notification, sending and receiving), MP3 song-playing 
(speaker and headphone), web browsing, notes taking (text and voice), and two-way 
messaging (text and voice). For each application (a task/device combination), we de-
signed a two-minute long benchmark that we felt represented typical use.  In applica-
tions where there were elements of non-repeatability, we repeated the experiments 
several times to ensure that all effects were adequately capture 

2.1.2  Measurement Setup 
For our experiments we measured total system power. For the current drawn by the 
device, we measured the voltage across a 0.10 ohm sense resistor (tolerance 1%) 
between the power source and the device. In order to reduce noise, we amplified the 
voltage across the resistor, which was then measured by a data acquisition system. 
For all devices except the cell phone, we removed the batteries and ran the device 
from a DC power supply, measuring current as it entered the device.  Since our cell 
phone wouldn’t run in this manner, we used a fully charged battery with a sense  
resistor between the cell and the additional electronics we found within the battery 
case. In order to observe time-varying behavior, we collected a 2 minute trace of 
each device and application at sample rate of 10,000 samples per second. Traces in-
cluded both the current (as output by the MAX4127) as well as the power supply 
voltage of the system under test.  Power was computed as the product of the voltage 
and current samples. In this paper, we report only average numbers in the interests 
of space.  

2.1.3   Measurement Results 
Figure 3 summarizes the average power consumption of the devices and benchmarks 
that we consider. As we expect, we observe that the different devices spend different 
amounts of power, even when providing similar service. However, more surprising, 
we see that the variations between these readings are very large, ranging from 950% 
to over 22,000%. For example, the energy use of our MP3 application varies by a fac-
tor of 49 when playing the identical music on different devices. Our email reply 
benchmark consumes between 71.5mW and 16.26W on different devices; that corre-
sponds to nearly a factor of 227.  

D evice R cv R eply Speaker H eadset T ext A udio T ext A udio

Laptop  15.16 W  16.25 W  18.02 W  15.99 W  16.55 W  14.20 W  14.65 W  14.40 W  15.50 W  13.975 W

Handheld  1.386 W  1.439 W  2.091 W  1.700 W  1.742 W  1.276 W  1.557 W  1.319 W  -  1.2584 W

Cellphone  539 mW  472 mW  -  -  -  -  -  392 mW  1147 mW  26 mW

Email Pager  92 mW  72 mW  -  -  -  78 mW  -  -  -  13 mW

High-end M P3  -  -  -  2.977 W  -  -  -  -  -  1.884 W

Low-end M P3  -  -  -  327 mW  -  -  -  -  -   143 mW

Voice Recorder  -  -  -  -  -  -  166 mW  -  -  17 mW

variance 16496% 22727% 861% 4890% 950% 18252% 8825% 3673% 1351% 107500%

M essaging

Idle

Email  M P 3 

B ro wse

N o tes

 

Fig. 3. Power consumption for special-purpose and general-purpose mobile devices 
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2.2   The Need for Energy Scale-Down 

In all the cases in the previous section, the large variances were primarily attributable 
to the difference between the low energy consumed by an application-specific device 
optimized for energy and the high-energy consumed by a general-purpose device op-
timized for functionality. The energy differences can be largely explained in terms of 
the individual components in each system. Focusing on one specific example of the 
email application, when moving from a laptop (highest power) to an email pager 
(lowest power), a number of components are replaced with less powerful components. 
This provides lower power and lower, or perhaps different, functionality (but opti-
mized for the characteristics of the application and market acceptance of reduced fea-
tures). The display and CPU are scaled down, and the wireless system has different 
characteristics. The application software is scaled down to provide just the essential 
features. 

The scale-down of the software is particularly interesting, since it often tends to be 
ignored. In our example, the software in these benchmarks includes Outlook in the 
laptop, Pocket Outlook on the iPAQ, and simple text email software on the cell phone 
and the pager. Each of these provides different functionality. Unlike a study of, say, 
CPU performance, where we would like to keep the benchmarks constant to ensure a 
fair comparison, we argue that when comparing power consumption of different im-
plementations of tasks, software is an important component that also needs to be 
scaled to meet the user' s desired functionality. 

Below, we discuss the power numbers and how they relate to our hypothesis that 
devices with general-purpose or combined functionality consume more power be-
cause they do not provide the adaptivity to respond to application requirements.  In 
these discussions, we highlight examples of how the optimizations found in special-
purpose devices can be useful in improving energy efficiency for our general-purpose 
devices, in the context of one application - email. 

Email application on different mobile devices: Comparing the cell phone and the 
email pager device for the email benchmark, we observe an interesting trend with 
the pager having a factor of 6 lower power in spite of its larger (and hence poten-
tially higher power) display. An examination of the traces indicates that that the 
pager’s wireless system has significantly lower activity compared to the cell phone. 
The cell phone demonstrates the compromises of convergence, even on small spe-
cial-purpose devices.  Like other handheld devices, the wireless protocol for a cell 
phone device typically leaves the radio off most of the time, turning it on periodi-
cally to check for activity. Our traces of both the phone and pager show periodic 
energy spikes that we hypothesize are the radio waking up. On the phone, these 
spikes are approximately 1.2 seconds apart. This corresponds to adding an average 
ring latency of 0.6 seconds to each incoming phone call. On the pager, these spikes 
are approximately 5 seconds apart, leading to an average 2.5 second latency on in-
coming email (a factor of 4 compared to the cell phone). Both these latency num-
bers seem appropriate to the application at hand, and this variation in the wakeup 
period can be considered another example of component scale-down for better en-
ergy efficiency.  Thinking in terms of scale-down, we might consider designing a 
cell phone protocol in a way that allows us to set the phone to an email-only mode, 
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allowing us to lengthen the average latency to 2.5 seconds, approaching the energy 
consumption of an email pager. 

Comparing the cell phone against the handheld shows an additional energy cost 
for additional generality.  The handheld email benchmark consumes approximately 
3 times the energy as the cell phone.  The wireless system for the handheld, in par-
ticular, is optimized for low latency local communication at a high bit rate, rather 
than wide-area communication at a bit-rate tuned for speech.  The ideal scalable 
handheld would incorporate both types of wireless systems or (in an ideal world) a 
single system that could scale its features to match either wireless system.  Even 
without changing the range or bandwidth, however, one scale-down approach 
would be to change the latency requirements of the wireless system to match the 
task at hand.  A typical wakeup period for 801.11b is 100ms, while 5 seconds 
would be fine for email.  Even though the 802.11b protocol supports longer wakeup 
periods, software generally does not provide the necessary interfaces for taking ad-
vantage of this.  A software system designed for scale-down of energy would pro-
vide these interfaces, and applications would facilitate scaling the components to 
match the requirements of the task at hand. 

In addition to the wireless component, we can observe opportunities for scale 
down in other components of the system. One important component of the hand-
held is the display which has no scale-down capacity. Even if the users are com-
fortable with a smaller, lower-resolution, lower-color screen to scroll through 
when reading their messages, there are no software or hardware interfaces to sup-
port this. This problem is particularly exacerbated in the laptop with its emphasis 
on a much larger form-factor. Similarly, the processor component of the various 
devices varies significantly in power. The rated power for the Pentium II and 
StrongARM processors used in the general-purpose device is orders of magnitude 
higher than the rated power of the embedded processors used in the special-
purpose devices, even though for some of our tasks, similar computation is per-
formed on all the processors.  

Summary: Though we focused on one application in the interests of space, similar 
trends are present in the other applications as well. For all the tasks, our results show 
that the special-purpose devices have orders of magnitude lower power consumption 
compared to the general-purpose devices, validating our intuition that they could 
serve as good examples of energy use that general-purpose devices may aim for. We 
suggest that researchers, in part, evaluate the success of their energy scale down ef-
forts by how closely they approach the energy consumption of such application spe-
cific devices. For example, in our ideal world, a laptop playing an MP3 file could, if 
the user desired, consume no more power than the best available MP3 player. The 
next section discusses specific energy scale-down optimizations that work towards 
this goal. 

3   Energy Scale-Down Optimizations  

As a way of closing the gap between the special-purpose and general-purpose devices, 
we suggest integrating the notion of requirement-specific energy scale-down at all 
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levels of the system, namely providing for the design and use of adaptivity in hard-
ware and software to exploit mismatches between system functionality and work-
load/user requirements. Specifically, we suggest considering each component in the 
general-purpose device and comparing it to the requirements of the applications using 
that device. Ideally, each general-purpose component should be capable of scaling 
down its energy use to match the design point used by the application with the lowest 
requirements. There are two alternatives for achieving this: gradation-based scaling, 
where the component has a wide range of adaptability, or plurality-based scaling, 
where the device chooses among multiple components with different properties. Be-
low, we discuss three example scale-down optimizations in the context of the display, 
wireless, and processor components of the system that attempt to use adaptivity to 
improve the efficiency of energy use in the device.  

3.1   Display Scale-Down  

The user acceptance of smaller, lower-quality, and lower-energy displays in special-
purpose devices indicates that certain tasks may not always need the most aggressive 
functionalities of the display (e.g., large size, full color, great resolution, backlight, 
etc.). In contrast, most current general-purpose systems include “one-size-fits-all” 
displays targeted at the needs of the most aggressive workload/user. This can lead to 
large energy-inefficiencies in the display energy consumption of other workloads and 
users.  This motivates the need for energy-adaptive display systems [IyerLuo+2003] 
that consume energy only on portions and characteristics of the screen that the user 
considers relevant.   

To understand user needs for displays, we analyzed the display usage traces from 
17 users, representing a few hundred hours of active screen usage. Our user popula-
tion covered a cross section of mobile system usage (administrative tasks, code devel-
opment, personal productivity, entertainment, etc.). We found that on average, the 
window of focus – a good first-order indication of the area of interest to the user – 
uses only about 60% of the total screen area. Additionally, in many cases, the screen 
usage is associated with content that could have been equivalently displayed, with no 
loss in visual quality, on much simpler lower power displays. Our analysis of the user 
traces indicated that many of these mismatches could be traced back to the typical 
content of the windows as opposed to specific user preferences. For example, win-
dows with low content (email composition, terminals, system status and control mes-
sages, menu widgets, etc.) were the dominant types of smaller-sized windows and 
windows with relatively higher content (web browsing, code development, Power-
Point, document reading, etc.) were the dominant types of larger-sized windows.  

Based on these observations, we evaluated a family of display scale-down optimiza-
tions built on emerging OLED display technologies [Stanford2001] that allow the en-
ergy consumption to be proportional to the overall light output of the display.  At a 
software level, we designed energy-aware user interfaces that change the lumines-
cence and color of the non-active screen areas to reduce power while leaving the active 
screen area (the window of focus) unchanged. Some examples of the interfaces pre-
sented to the user are summarized in Figure 4. Our experience with prototypes in  
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dictates broad acceptance of these interfaces among users, particularly in the context of 
longer battery life. Figure 5 summarizes the energy benefits from applying the fully-
dimmed optimization. Since the energy benefits are a function of the screen back-
ground and the window background colors, in addition to the default windows configu-
ration (teal screen background and white windows background) we bracketed our re-
sults by evaluating other configurations. As the results indicate, integrating scale-down 
optimizations in the display design can achieve factors of 1.5-5 reduction in the display 
energy.  The benefits for individual users vary, up to 10X in some cases.  

Original Interface Background half dim Background fully dimOriginal Interface Background half dim Background fully dim  

Fig. 4. Display interfaces with energy scale-down 

Listen 
Interval
Listen 

Interval

 

Fig. 5. Wireless power consumption from beacons 

In addition to the specific family of designs that we evaluated, energy scale-down 
can be integrated in other ways as well. For example, with display technologies that 
do not support energy variability, a hierarchy of displays or alternative communica-
tion and user input methods could be used to provide the hardware support for adap-
tivity. Similarly at the software level, we can extend the optimizations discussed 
above to include pointer-based user-relevance determination, time-based dimming in-
terfaces, as well as intra-application support for adaptivity.  Though not presented  
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here in detail, the power benefits and user acceptance of energy-adaptive display in-
terfaces for handhelds was also studied. Again, the results show factors of 1.3 to 8.3 
with high user acceptance ratings [Harter+2003].  

3.2   Wireless Scale-Down  

As discussed earlier, special-purpose communication devices such as cell phones or 
pagers consume significantly lower energy in the wireless system by minimizing 
the activity on the wireless network. In contrast, the general-purpose systems often 
have wireless subsystems and protocols optimized for the most aggressive connec-
tion requirements (e.g., bandwidth, latency, response) leading to energy inefficien-
cies. The wireless scale-down optimization discussed in this section addresses this 
drawback.  

To understand the workload’s requirements for the wireless system, we evaluated 
the energy spent in the 802.11b wireless sub-system of a general-purpose mobile de-
vice for an email application [AbouGhazalaMayo+2003]. Our results indicated that a 
large fraction of the wireless energy was spent when the system was in idle mode (as 
opposed to transmitting/receiving messages).  Further, as indicated in Figure 6, the 
power consumed in the idle mode was dominated by the power spent in listening for 
periodic beacons to ensure timely response to incoming transmissions. Typical default 
configurations set the “listen interval” (the time between beacons) to be 100 ms. In 
contrast, the mean time period between message receipts for our representative user 
was many minutes.  

Based on these observations, we implemented an energy-adaptive wireless sys-
tem that could adapt its listen interval to better respond to the desired application 
response times. For example, if the user finds an email latency of 5 seconds to be  
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acceptable, this information should be reflected in the listen interval of the wireless 
protocol. We evaluated two approaches. For short increases in listen interval (5 sec-
onds, “Listen change” in Figure 7), we changed the listen interval by changing the 
corresponding parameter in the 802.11 protocol. For longer increases (60 seconds, 
“Listen shut” in Figure 7), we turned off and restarted the wireless card. As shown 
in the Figure, the wireless scale-down optimizations achieve factors of 1.3 to 9 bet-
ter energy consumption. 

Though the specific optimization considered above is fairly straightforward, 
the same insights can be applied to other configurations, particularly in the con-
text of multiple wireless networks in the same device. In particular, a small  
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amount of additional hardware in the form of a small low-power radio to supple-
ment the main wireless network can provide even finer-granularity of adaptivity 
[ShihBahl+2002].  

3.3   Processor Scale-Down  

The third scale-down optimization that we consider focuses on the processor compo-
nent of the system power and is motivated by the observation that in some cases, a 
lower power and lower functionality processor is often enough to adequately perform 
a particular task. Once again, the general-purpose system includes a processor that is 
typically targeted at the most aggressive workload requirements (performance) and 
does not have a simple mechanism to scale down to the lower functionalities required 
by other tasks.  

Fourteen integer and floating-point applications from the SPEC2000 bench-
mark suite were simulated on five different processor cores supporting the same 
instruction set architecture [KumarFarkas+2003] [KumarFarkas+2003b]. Figure 8 
shows the energy efficiency of the five cores over the course of execution of a 
representative benchmark. The five cores approximate the MIPS R4700, the Al-
pha 20164 (EV4), 21164 (EV5), 21264 (EV6) and a potential next-generation ap-
proximation to the EV6 (EV8-).  The results indicated that different processor 
cores have different energy efficiencies based on the nature of the workload being 
executed on them.  

Based on the analysis, a plurality-based scale-down optimization for processors 
based on heterogeneous single-ISA multi-core architectures may yield energy 
benefits. The key idea is to have the main high-performance processor supple-
mented with other satellite processors that span the power-performance design 
space. The workload is run on the core with the best energy efficiency properties 
for that workload, and the other cores are shut off. This should be possible with 
little additional die area, as the die size of such a combined system is little more 
than the size of the largest processor, as shown in Figure 9.  Evaluation of both 
static and dynamic heuristics for workload migration indicate an average energy 
improvement of 1.4X (factors of 2 to 10 in six of the applications) with less than 
3% speed degradation. In cases when 
lower performance is acceptable, it is 
possible to achieve factors of 3 to 11 
reduction in energy with less than 
25% loss in perform-
ance[KumarFarkas+2003][KumarFark
as+2003b]. 

Though limited to the specific tech-
nology implementation of the proces-
sor, another potential scale-down opti-
mization for processors is the use of 
voltage and frequency scaling [Pillai-
Shin2001]. Additional scale-down op-
timizations can also consider the use of 

 

Fig. 9. CPU scale-down architecture 
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energy-aligned cores that design the architecture of the specific cores to better im-
prove energy efficiency.  

4   Conclusions 

As the mobile device market matures, the large number of mobile computing devices 
optimized for different form factors and functionalities is likely to be replaced with a 
few commonly-accepted devices that integrate multiple functionalities in the same 
device. Indeed, this is evidenced by the large number of announcements about “com-
bination products” such as camera/cell phones or cell phones/personal organizers or 
gaming devices/MP3 players, etc. However, while there has been a great focus on de-
signing these devices to scale up the device properties to provide the greatest of the 
various functionalities, there has been very little work in providing approaches to 
scale-down the device to the least of the various functionalities. This has particularly 
been a problem in the case of the energy consumption of these devices when a system 
component consumes more energy by virtue of supporting a larger function set than 
what is desired by an application (E.g., reading black and white text messages on a 
color screen cell phone organizer).  

This paper argues that along with the importance given to scaling up functional-
ity, equal importance should be given to designing methods in hardware and soft-
ware to scale down the energy. Individual applications or users can then use these 
mechanisms to control the energy based on their specific requirements. As valida-
tion of this thesis, we compare the energy consumption of general-purpose devices 
(that support the function set required by several tasks) with special-purpose de-
vices targeted specifically at particular tasks. Across the range of tasks we consid-
ered – sending and receiving email, web browsing, listening to MP3 music, text and 
audio notes taking, and text and phone messaging – we observed inefficiencies in 
the general-purpose devices that led to factors of 10 to 100 higher energy consump-
tion compared to the special-purpose devices. To the best of our knowledge, ours is 
the first such study to perform a consistent comparison of the energy consumption 
of the various devices. Furthermore, an analysis of the differences between the de-
vices illustrates opportunities when user requirements can be met with much lower 
energy use.  

Building on this analysis, we proposed and evaluated three specific scale-down ap-
proaches that exploit an awareness of the user and task requirements to scale down 
the energy selectively. In the first case, the system leverages the observation that users 
typically use only a fraction of their screen area and selectively controls the pixel in-
tensity on the screen to match the power consumed in the display with the portions 
relevant to the user. In the second case, the system leverages the observation that us-
ers are willing to tolerate longer response times than what is currently provided by 
wireless networks and by exposing this tolerance to the protocol, reduces the power 
consumed in the wireless system. The third case observes that different processor de-
signs are better matched, from an energy efficiency point of view, to different work-
loads and uses a multi-core architecture to reduce energy. In all these cases, the en-
ergy scale-down optimizations achieve close to a factor of 2 to 10 better energy 
consumption compared to existing methods of designing systems. 
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While the three optimizations we consider in the paper validate our argument on 
the potential of energy scale down in future designs, we believe that we have only 
scratched the surface. Previously proposed means for adaptivity can complement 
these to provide further scale-down, for example, voltage and frequency scaling [Pil-
laiShin2001], architectural gating [ManneKlauser+1998], selective memory usage 
[LebeckFan+2000] and disk spin-down [DouglisKrishnan+1994]. However, the  
factors of 10 to 100 indicated in our energy comparison show that we still have a  
significant potential in terms of energy savings to attain. Additional mechanisms for 
adaptivity in hardware and software for energy scale down and policies for require-
ments-aware use of this adaptivity will be essential as we try to further address the 
battery life challenges in future systems.  
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Abstract. In the context of portable embedded systems, reducing en-
ergy is one of the prime objectives. Memories are responsible for a sig-
nificant percentage of a system’s aggregate energy consumption. Conse-
quently, novel memories as well as novel memory hierarchies are being
designed to reduce the energy consumption. Caches and scratchpads are
two contrasting variants of memory architectures. The former relies com-
pletely on hardware logic while the latter requires software for its uti-
lization. Most high-end embedded microprocessors today include onchip
instruction and data caches along with a scratchpad.

Previous software approaches for utilizing scratchpad did not consider
caches and hence fail for the prevalent high-end system architectures. In
this work, we use the scratchpad for storing instructions. We solve the
allocation problem using a greedy heuristic and also solve it optimally
using an ILP formulation. We report an average reduction of 20.7% in
instruction memory energy consumption compared to a previously pub-
lished technique. Larger reductions are also reported when the problem
is solved optimally.

The scratchpad in the presented architecture is similar to a preloaded
loop cache. Comparing the energy consumption of our approach against
that of preloaded loop caches, we report average energy savings of 28.9%
using the heuristic.

Keywords: Memory architectures, Memory allocation, Energy aware
compilation, Integer Linear Programming, Memory energy modeling.

1 Introduction

Over the past decade, the popularity of mobile embedded devices such as mobile
phones, digital cameras etc. has been one of the major driving forces in tech-
nology. The computing power of early desktop computers is now available in a
handheld device. Unfortunately, battery technology could not keep pace with the
advances made in silicon technology. As a result, contemporary mobile embed-
ded systems suffer from limited battery capacity. Reduced energy consumption
translates to reduced dimensions, weight and cost of the device. In such a com-
petitive market, these reductions might be sufficient to provide an edge over
competing products.
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Several researchers [4, 16] have identified the memory subsystem as the en-
ergy bottleneck of the entire system. In fact, fetches from the instruction memory
typically account for much of a system’s power consumption [10]. Memory hier-
archies are being introduced to reduce the memory system’s energy dissipation.
Caches and scratchpad memories represent two contrasting memory architec-
tures. Caches improve performance by exploiting the available locality in the
program. As a consequence, energy consumption is also reduced. However, they
are not an optimal choice for energy constrained embedded systems. Caches,
apart from the actual memory, consist of two additional components [22]. The
first component is the tag memory required for storing information regarding
valid addresses. The second component is the hardware comparison logic to de-
termine cache hits and cache misses. These additional components consume a
significant amount of energy per access to the cache irrespective of whether the
access translates to a hit or a miss. Also, caches are notorious for their unpre-
dictable behavior [14].

On the other end of the spectrum are the scratchpad memories, consisting
of just data memory and address decoding circuitry. Due to the absence of
tag memory and comparators, scratchpad memories require considerably less
energy per access than a cache. In addition, they require less onchip area and
allow tighter bounds on WCET prediction of the system. However unlike caches,
scratchpads require complex program analysis and explicit support from the
compiler. In order to strike a balance between these contrasting approaches,
most of the high-end embedded microprocessors (e.g. ARM10E [1], ColdFire
MCF5 [15]) include both onchip caches and a scratchpad.

We assume a memory hierarchy as shown in figure 1.(a) and utilize the
scratchpad for storing instructions. The decision to store only instructions is mo-
tivated by the fact that the instruction memory is accessed on every instruction
fetch and the size of programs for mobile embedded devices is smaller compared
to their data size requirements. This implies that small scratchpad memories
can achieve greater energy savings when they are filled with instructions rather
than with data. In this paper, we model the cache behavior as a conflict graph
and allocate objects onto the scratchpad considering their effect on the I-cache.
As shown later, the problem of finding the best set of objects to be allocated on
the scratchpad can be formulated as a non-linear optimization problem. Under
simplifying conditions, it can be reduced to either a Weighted Vertex Cover [9]
problem or a Knapsack [9] problem, both of which are known to be NP-complete
problems. A greedy heuristic is used to solve the scratchpad allocation problem.
An optimal solution is also obtained by formulating the scratchpad allocation
problem as an ILP problem. We compare our approach against a published tech-
nique [19]. Due to the presence of an I-cache in our architecture, the previous
technique fails to produce optimal results and may even lead to the problem of
cache thrashing [11].

We also compare our approach to that of preloaded loop caches [10], as the
utilization of the scratchpad in the current setup (see figure 1) is similar to a loop
cache. Preloaded loop caches are architecturally more complex than scratchpads,
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but are less flexible as they can be preloaded with only a limited number of loops.
We demonstrate that using our allocation algorithm, scratchpad memories can
outperform their complex counterparts.

In the next section, we describe related work and detail the shortcomings of
the previous approaches. Section 3 describes the information regarding memory
objects, cache behavior and the energy model. Section 4 presents the scratchpad
allocation problem in detail, followed by the description of the proposed heuristic
and the ILP formulation. The experimental setup is explained in section 5. In
section 6 we present the results for an ARM based system and end the paper
with a conclusion and future work.

2 Related Work

Analytical energy models for memories [12] have been found to be fairly accurate.
We use cacti [22] to determine the energy per access for caches and preloaded
loop caches. The energy per access for scratchpad memories was determined
using the model presented in [3].

Application code placement techniques [17, 21] were developed to improve the
CPI (cycles per instruction) by reducing the number of I-cache misses. Those
basic blocks that are frequently executed in a contiguous way are combined
to form so-called traces [17]. Authors in [17] placed traces within functions,
while [21] placed them across function boundaries to reduce the I-cache misses.

Several researchers [2, 16] have utilized scratchpad memories for assigning
global/local variables, whereas only Steinke et al. [19] considered both program
and data parts (memory objects) to be allocated onto the scratchpad. They
assumed a memory hierarchy composed of only scratchpad and main memory.
Profit values were assigned to program and data parts according to their execu-
tion and access counts, respectively. They then formulated a knapsack problem
to determine the best set of memory objects to be allocated to the scratchpad
memory.
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Though this approach is sufficiently accurate for the used memory hierarchy,
it is not suitable for the current setup. The assumption that execution (access)
counts are sufficient to represent energy consumption by a memory object fails in
the presence of a cache, where execution (access) counts have to be decomposed
into cache hits and misses. The energy consumption of a cache miss is signifi-
cantly larger than that of a cache hit. Consequently, two memory objects can
have the same execution (access) counts, yet have substantially different cache
hit/miss ratio and hence energy consumption. This discussion stresses the need
for a more detailed energy model taking these effects into account. In addition,
maintaining the conflict relationships between memory objects is not considered
during code placement using the previous approach. The memory objects are
moved instead of copying them from main memory to the scratchpad. As a re-
sult, the layout of the entire program is changed, which may cause completely
different cache access patterns and thus lead to erratic results.

Authors in [13] proposed an instruction buffer to act as an alternative location
for fetching instructions in order to improve the energy consumption of a system.
Loops identified by the short backward branch at the end of the first iteration
are copied to the instruction buffer during the second iteration. From the third
iteration onwards, instructions are fetched from the instruction buffer instead
of the L1 I-cache, given that no change-of-flow (e.g. branch) statements are
contained within the loop. Ross et al. [10] proposed a Preloaded Loop Cache
which can be statically loaded with pre-identified memory objects. Start and
end addresses of the memory objects are stored in the controller, which on every
instruction fetch determines whether to access the loop cache or the L1 I-cache.
Consequently, the loop cache can be preloaded with complex loops as well as
functions. However, to keep the energy consumption of the controller low, only
a small number of memory objects (typically 2-6) can be preloaded.

The problem of being able to store only a fixed number of memory objects in
the loop cache will lead to problems for large programs with several hot spots. As
in [19], memory objects are greedily selected only on the basis of their execution
time density (execution time per unit size). In the wake of the discussion we
enumerate the contributions of this paper.

– It for the first time studies the combined effect of a scratchpad and an I-cache
on the memory system’s energy consumption.

– It stresses the need for a sophisticated allocation algorithm by demonstrating
the inefficiency of previous algorithms when applied to the present architec-
ture.

– It presents a novel scratchpad allocation algorithm which can be easily ap-
plied to a host of complex memory hierarchies.

– It demonstrates that scratchpad memories together with an allocation algo-
rithm can replace preloaded loop caches.

Please note that in the rest of this paper, energy consumption refers to the en-
ergy consumption of the instruction memory subsystem. In the following section,
we describe preliminary information required for understanding our approach.
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3 Preliminaries

We start by describing the assumed architecture for the current research work,
followed by the description of the memory objects. The interaction of memory
objects within the cache is represented using a conflict graph, which forms the
basis of the proposed energy model and the algorithm.

3.1 Architecture

For the presented research work we assume a Harvard architecture (see fig-
ure 1(a)) with the scratchpad at the same horizontal level as the L1 I-cache.
The scratchpad is mapped to a region in the processor’s address space and acts
as an alternative non-cacheable location for fetching instructions. As shown in
figure 1(b), the preloaded loop cache setup is similar to using a scratchpad.

3.2 Memory Objects

In the first step of our approach, memory objects within the program code are
identified. The memory objects are then distributed between offchip main mem-
ory and non-cacheable scratchpad memory to minimize energy consumption.
The well known compiler optimization trace generation is used to identify the
memory objects. A trace is a frequently executed straight-line path, consisting
of basic blocks connected by fall-through edges [21]. Dynamic profiling is re-
quired to determine traces in the program. Our traces are kept smaller than
the scratchpad size, as larger traces can not be placed onto the scratchpad as a
whole. The traces are appended with NOP instructions to align them to cache
line boundaries. This ensures a one-to-one relationship between cache misses
and corresponding traces. The rational behind using traces is threefold. Firstly,
traces improve the performance of both the cache and the processor by enhanc-
ing the spatial locality in the program code. Secondly, due to the fact that traces
always end with an unconditional jump [21], they form an atomic unit of instruc-
tions which can be placed anywhere in memory without modifying other traces.
Finally, traces are accountable for every cache miss caused by them. In the rest
of the paper, unless specified, traces will be referred to as memory objects (MO).
In the following subsection, we represent the cache behavior at the granularity
of memory objects by a conflict graph.

3.3 Cache Behavior (Conflict Graph)

The cache maps an instruction to a cache line according to the following function:

Map(address) = address mod
CacheSize

Associativity ∗ WordsPerLine

Similarly, a memory object is mapped to cache line(s) depending upon its start
address and size. Two memory objects potentially cause a conflict in the cache
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if they are mapped to at least one common cache line. This relationship can be
represented by a conflict graph G (see figure 2), which is defined as follows:

Definition: The Conflict Graph G = (X, E) is a directed weighted graph with
node set X = {x1, . . . , xn}. Each vertex xi in G corresponds to a memory object
(MO) in the application code. The edge set E contains an edge eij from node
xi to xj if a cache-line belonging to xj is replaced by a cache-line belonging to
xi using the cache replacement policy. In other words, eij ∈ E if there occurs
a cache miss of xi due to xj . The weight mij of the edge eij is the number of
cache lines that need to be fetched if there is a miss of xi that occurs due to xj .
The weight fi of a vertex xi is the total number of instruction fetches within xi.

In order to build up the conflict graph for a program, we first need to iden-
tify the memory objects to be considered by our algorithm. We use profiling to
determine traces. In order to mark the vertices with the total number of instruc-
tion fetches and to determine the number of conflict misses among the memory
objects, dynamic profiling is also required. The determined values are then at-
tributed to vertices and conflict edges, respectively. In order to minimize the
influence of the chosen input data set on the results, average values generated
by using several distinct input vectors can be used.

The conflict graph as shown in figure 2 is a directed graph because the conflict
relationship is antisymmetric. The conflict graph G and the energy values are
utilized to compute the energy consumption of a memory object according to
the energy model proposed in the following subsection.

3.4 Energy Model

As mentioned before, all energy values refer to the energy consumption of the
instruction memory subsystem. The energy E(xi) consumed by an MO xi is
expressed as:

E(xi) =
{

ESP (xi) if xi is present on scratchpad
ECache(xi) otherwise (1)
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where ECache can be computed as follows:

ECache(xi) = Hit(xi) ∗ ECache hit + Miss(xi) ∗ ECache miss (2)

where functions Hit(xi) and Miss(xi) return the number of hits and misses,
respectively, while fetching the instructions of MO xi. ECache hit is the energy
of a hit and ECache miss is the energy of a miss in one line of the I-cache.

Miss(xi) =
∑

xj∈Ni

Miss(xi, xj) with (3)

Ni = {xj : eij ∈ E}

where Miss(xi, xj) denotes the number of conflict cache misses of MO xi caused
due to conflicts with MO xj . The sum of the number of hits and misses is equal
to the number of instruction fetches fi in an MO xi:

fi = Hit(xi) + Miss(xi) (4)

For a given input data set, the number of instruction fetches fi within an MO
xi is a constant and is independent of the memory hierarchy. Substituting the
terms Miss(xi) from equation (3) and Hit(xi) from equation (4) in equation (2)
and rearranging derives the following equation:

ECache(xi) = fi ∗ ECache hit+ (5)∑
xj∈Ni

Miss(xi, xj) ∗ (ECache miss − ECache hit)

The first term in equation (5) is a constant while the second term, which is
variable, depends on the overall program code layout and the memory hierarchy.
We would like to point out that the approach [10] only considered the constant
term in its energy model. Consequently, the authors could not optimize the
overall memory energy consumption.

Since there are no misses when an MO xi is present in the scratchpad, we
can deduce the following energy equation:

ESP (xi) = fi ∗ ESP (6)

where ESP is the energy per access of the scratchpad.

4 Problem Description

Once we have created the conflict graph G annotated with vertex and edge
weights, the energy consumption of memory objects can be computed. Now, the
problem is to select a subset of memory objects which minimizes the number of
conflict edges and the overall energy consumption of the system. The subset is
bounded in size by the scratchpad size.
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In order to formally describe the algorithm we need to define a number of
variables. The binary variable l(xi) denotes the location of memory object xi in
the memory hierarchy:

l(xi) =
{

0, if xi is present on scratchpad
1, otherwise (7)

Since a memory object allocated to the scratchpad does not conflict with other
memory objects, we can represent Miss(xi, xj) (see above) as follows:

Miss(xi, xj) =
{

0, if xj is present on scratchpad
mij , otherwise (8)

where mij is the weight of the edge eij connecting vertex xi to xj . Function
Miss(xi, xj) can be reformulated using the location variable l(xj) and repre-
sented as:

Miss(xi, xj) = l(xj) ∗ mij (9)

Similarly, the location variable l(xi) can be used to reformulate the energy equa-
tion (1) denoting the energy consumed by the memory object.

E(xi) = [1 − l(xi)] ∗ ESP (xi) + l(xi) ∗ ECache(xi) (10)

We substitute the energy equations for ECache and ESP from equations (5) and
(6), respectively, into the above equation. By rearranging the terms we transform
equation (10) into the following form.

E(xi) = fi ∗ ESP + fi ∗ [ECache hit − ESP ] ∗ l(xi)+ (11)

[ECache miss − ECache hit] ∗ [
∑

j∈Ni
l(xj) ∗ l(xi) ∗ mij ]

We find the last term is a quadratic degree term, since the number of misses
of a memory object xi not only depends upon its location but also upon the
location of the conflicting memory objects xj .

The objective function ETotal denoting the total energy consumed by the
system needs to be minimized.

ETotal =
∑

xi∈X

E(xi) (12)

Minimization of the objective function is to be performed while conforming to
the scratchpad size constraint.

∑
xi∈X

[1 − l(xi)] ∗ S(xi) ≤ ScratchpadSize (13)

The size S(xi) of memory object xi is computed without considering the ap-
pended NOP instructions. These NOP instructions are stripped away from the
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Greedy-Heuristic(G(X,E), ScratchpadSize)
1 Rem SPSize = ScratchpadSize
2 L = NIL
3 while ( ∃x ∈ X : S(x) ≤ Rem SPSize )
4 do select xi ∈ X : S(xi) ≤ Rem SPSize ∧

E(xi) > E(xk) ∀xk ∈ X : S(xk) ≤ Rem SPSize
5 X = X − {xi}
6 E = E − {eij |∀j : j ∈ Ni} − {eji|∀j : i ∈ Nj}
7 Rem SPSize = Rem SPSize - S(xi)
8 L = L ∪ {xi}
9 return L

Fig. 3. Greedy Heuristic for Scratchpad Allocation Problem

memory objects prior to allocating them to the scratchpad. The non-linear op-
timization problem can be solved to obtain a scratchpad allocation optimized
with respect to energy.

Our problem formulation can be easily extended to handle complex memory
hierarchies. For example, if we had more than one scratchpad at the same hori-
zontal level in the memory hierarchy, then we only need to repeat inequation (13)
for every scratchpad. An additional constraint ensuring that a memory object is
assigned to at most one scratchpad is also required.

The above optimization problem is related to two NP-complete problems viz.
Weighted Vertex Cover [9] and Knapsack problem [9]: Under the simplifying
assumption that the cache present in the system is large enough to hold all the
memory objects without causing a single conflict miss, the energy consumption
of a memory object becomes independent of other memory objects. Under this
assumption, the problem is reduced to a Knapsack problem with each node
having constant weights. On the other hand, if we assume that the energy of an
access to the scratchpad ESP is equal to the energy of a cache hit ECache hit,
equation (11) transforms to the following form and the problem is reduced to
the Weighted Vertex Cover problem:

E(xi) = fi ∗ ESP + [ECache miss − ECache hit] ∗ [
∑
j∈Ni

l(xj) ∗ l(xi) ∗ mij ] (14)

Fortunately, approximation algorithms can be employed to obtain near-opti-
mum solutions in polynomial time. In the following section, we will present a
greedy heuristic which solves the scratchpad allocation problem near-optimally
in most cases. We will also solve the problem optimally using an Integer Linear
Programming (ILP) based approach.

4.1 Greedy Heuristic

The proposed greedy heuristic tries to put maximum weighted nodes on the
scratchpad. It takes as input the conflict graph and the scratchpad size and
returns the list of memory object to be allocated onto the scratchpad. The
heuristic is formally presented in figure 3.
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The heuristic iteratively computes the energy consumption of each memory
object which can be placed on the scratchpad memory, considering not only
execution counts but also the number of conflict cache misses caused by other
memory objects. The maximum energy vertex to be allocated to the scratchpad
is then greedily selected. This vertex is removed from the conflict graph G and
appended to the list L and the unallocated scratchpad size (Rem SPSize) is
reduced appropriately.

A memory object present in the scratchpad does not conflict with the memory
objects present in the cache. The energy of the conflicting memory objects is
thus reduced by removing the vertex and the adjacent edges from the conflict
graph. The energy consumption of a memory object xi is computed according
to the energy model proposed in subsection 3.4. The heuristic iterates as long
as there exists a memory object which can be placed on the scratchpad without
violating the scratchpad size constraint. On termination, a list of memory objects
to be allocated onto the scratchpad is returned. The time complexity of the
heuristic is O(ScratchpadSize ∗ (|X| + |E|)) if we precompute and store the
energy consumption of each memory object xi at the end of each “while loop”
iteration.

4.2 Integer Linear Programming

In order to formulate an Integer Linear Programming problem, we need to lin-
earize the scratchpad allocation problem. This can be achieved by replacing the
non-linear term l(xi) ∗ l(xj) of equation (11) by an additional variable L(xi, xj):

E(xi) = fi ∗ ESP + (15)
fi ∗ [ECache hit − ESP ] ∗ l(xi) +

[ECache miss − ECache hit] ∗ [
∑
j∈Ni

L(xi, xj) ∗ mij ]

In order to prevent the linearizing variable L(xi, xj) from taking arbitrary values,
the following linearization constraints have to be added to the set of constraints:

l(xi) − L(xi, xj) ≥ 0 (16)
l(xj) − L(xi, xj) ≥ 0 (17)

l(xi) + l(xj) − 2 ∗ L(xi, xj) ≤ 1 (18)

The objective function ETotal and the scratchpad size constraint remain un-
changed (cf. equations (12) and (13)).

A commercial ILP Solver [6] is used to obtain an optimal subset of memory
objects which minimizes the objective function. The number of vertices |X| of
the conflict graph G is equal to the number of memory objects, which is bounded
by the number of basic blocks in the program code. The number of linearizing
variables is equal to the number of edges |E| in the conflict graph G. Hence, the
number of variables in the ILP problem is equal to |X| + |E| and is bounded by
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Fig. 4. Experimental Workflow

O(|X|2). The actual runtime of the used ILP solver [6] was less than one second
on a Sun-Blade 100 running at 500 MHz for a conflict graph containing 455
vertices. The computation times may be expected to increase if non-commercial
tools (e.g. lp solve [5]) are used. In the next section we describe the experimental
setup used for conducting experiments.

5 Experimental Setup

The experimental setup consists of an ARM7T processor core, onchip instruction
and data caches, an onchip scratchpad and an off-chip main memory. The used in-
struction cache has a direct-mapped organization since this architecture has been
found to be most suitable for low-power instruction caches [20]. The capacity of
the instruction cache was selected according to the size of the corresponding bench-
mark.Wedetermine the effect of allocation techniques for scratchpad on the energy
consumption of the instruction memory subsystem. The cacti cache model [22] was
used to calculate the energy consumption per access to a cache, loop cache and
scratchpad memory, all assumed to be onchip and in 0.5μm technology. The loop
cache was assumed to be able to hold a maximum of 4 loops. The energy consump-
tion of the main memory was measured from our evaluation board [18].

Experiments were conducted according to the workflow presented in figure 4.
In the first step, the benchmarks programs are compiled using ENCC [7], an
energy aware C compiler. Trace generation [21] is a well known I-cache perfor-
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mance optimization technique. For a fair comparison, traces are generated for
all the allocation techniques. In the following step, the scratchpad allocation
algorithm can either be the greedy heuristic (cf. subsection 4.1), the ILP based
allocation algorithm (cf. subsection 4.2) or Steinke’s scratchpad allocation algo-
rithm [19]. The generated machine code is then fed into ARMulator [1] to obtain
the instruction trace. Our custom memory hierarchy simulator [8], based on the
instruction trace, memory hierarchy and the energy cost model, computes the
aggregate energy consumed by the memory subsystem.

For the loop cache configuration, the loop cache is preloaded with the loops
and functions selected by the allocation algorithm presented in [10]. The energy
consumed by the memory subsystem is computed in a similar way, using the
appropriate memory hierarchy and energy cost model.

6 Results

A subset of benchmarks from the Mediabench suite were used to substantiate
our claims concerning energy savings using the proposed algorithm. The size of
the scratchpad/loop cache was varied while keeping the rest of the instruction
memory subsystem invariant. The number of accesses, hits and misses to every
memory in the hierarchy were counted. Based on this information and the energy
model (subsection 3.4), energy consumption was computed.
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Table 1. Overall Energy Savings

Benchmark MemSize Energy Consumption (μJ) Improvement(%)
(size) (bytes) SP SP SP LC SP(Heu) SP(Heu) SP (Heu)

(Heu) (ILP) (Steinke) (Ross) vs. vs. vs.
SP(ILP) SP(Steinke) LC (Ross)

adpcm 128 3567 3397 2763 2998 -5.0 -29.1 -19.0
(1 KB) 256 1744 1695 2040 1784 -2.8 14.6 2.3

512 225 — 1400 1140 — 84.0 80.3
g721 128 7565 7393 8012 7739 -2.3 5.6 2.2
(4.7 KB) 256 6412 5984 6321 6446 -7.1 -1.4 0.5

512 5249 4478 4469 6131 -17.2 -17.4 14.4
1024 2566 2107 3033 6207 -21.8 15.4 58.7

mpeg 128 6318 6324 12161 10293 0.1 48.0 38.6
(21.4KB) 256 5983 5989 11697 10266 0.1 48.9 41.7

512 3779 3755 10157 10291 -0.6 62.8 63.3
1024 3709 3419 3579 10336 -8.5 -3.6 64.1

-6.5 20.7 28.9

Figure 5 displays the energy consumption along with all its respective param-
eters (i.e. scratchpad accesses, cache accesses and cache misses) of the proposed
heuristic for the MPEG benchmark. The instruction cache size was set to 2k for
these experiments. All the results are shown as percentages of Steinke’s algo-
rithm [19], with the parameters of that algorithm being denoted as 100%. It is
interesting to note that in spite of higher I-cache accesses and lower scratchpad
accesses, the heuristic reduces energy consumption against Steinke’s algorithm.
The substantially lower I-cache misses are able to over-compensate for higher
I-cache accesses and result in reduced energy consumption. The justification for
this is that Steinke’s algorithm tries to reduce energy consumption by increas-
ing the number of accesses to the energy efficient scratchpad. In contrast, our
heuristic tries to reduce I-cache misses by assigning conflicting memory objects
to the scratchpad. Since I-cache misses account for a significant portion of en-
ergy consumption, the heuristic is able to conserve up to 63% energy against
Steinke’s algorithm. In one case (1024 bytes scratchpad), Steinke’s algorithm
performs marginally better than our approach. For this setup, moving (instead
of copying) the memory objects seems to completely change the program’s cache
conflict behavior. However, there is no way of foreseeing this kind of effect when
applying Steinke’s algorithm and it might happen that instead of reducing the
cache misses, cache performance and energy consumption are deteriorated since
the algorithm doesn’t account for cache behavior.

In fig. 6, we compare a scratchpad allocated with our heuristic against a loop
cache preloaded with Ross’s algorithm [10]. Similar to figure 5, all results are
shown as percentages of the corresponding parameters of Ross’s algorithm [10].
For small scratchpad/loop cache sizes (128 and 256 bytes), the number of accesses
to loop cache are higher than those to scratchpad. However, as we increase
the size, the loop cache’s performance is restricted by the maximum number
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of only 4 preloadable memory objects. The scratchpad, on the other hand, can
be preloaded with any number of memory objects as long as their aggregate
size is less than the scratchpad size. Moreover, the number of I-cache misses is
substantially lower if a scratchpad is used instead of a loop cache. Consequently,
a scratchpad is able to reduce energy consumption at an average of 52% against
a loop cache for the MPEG benchmark.

In figure 7, we compare the energy consumption of different scratchpad allo-
cation algorithms (viz. Heuristic, ILP and Steinke’s) for scratchpad based sys-
tems and that of Ross’s algorithm [10] for loop cache based systems. As ear-
lier, the energy consumption due to Ross’s algorithm is denoted as 100% while
the energy consumption of the scratchpad allocation algorithms are denoted as
percentages of Ross’s algorithm. A couple of interesting points can be noted
for the figure. Firstly, the heuristic performs fairly close to the optimal solu-
tion obtained by the ILP based algorithm. Secondly, for the smaller sizes (128
and 256 bytes), loop cache performs better than the scratchpad allocated with
Steinke’s algorithm [19], while the opposite is true for larger sizes. Figure 8 de-
picts the comparison of scratchpad allocation algorithms and Ross’s algorithm
for all benchmarks. A scratchpad and a loop cache of 128 bytes was assumed to
be present in the memory hierarchy. The instruction cache size was set to 1k and
128 bytes for g721 and adpcm, respectively. Observations similar to the previous
figure can be noted.

Finally, table 1 summarizes the energy consumption for scratchpad and loop
cache allocated with the corresponding allocation algorithms.

7 Conclusion and Future Work

In this paper, we model the cache-behavior based scratchpad allocation prob-
lem as a generic non-linear optimization problem. The problem is solved near-
optimally using a heuristic and also optimally using an ILP based approach.
The energy consumption of the heuristic is on average a meagre 6.5% away from
that of the optimal solution. The presented techniques reduce the energy con-
sumption of the system against a published algorithm. An average reduction
of 20.7% in energy consumption due the heuristic is observed. In addition, we
also demonstrate that the simple scratchpad memory allocated with the pre-
sented techniques outperforms a preloaded loop cache. Average energy savings
of 28.9% are observed for the proposed heuristic and even higher values can be
reported for ILP based allocation algorithm. The presented techniques can be
easily extended to handle a variety of complex memory hierarchies.

References

1. ARM. Advanced RISC Machines Ltd. www.arm.com.
2. O. Avissar, R. Barua, and D. Stewart. An Optimal Memory Allocation Scheme for

Scratch-Pad-Based Embedded Systems. IEEE Transactions on Embedded Com-
puting Systems, 1(1):6–26, November 2002.



Efficient Scratchpad Allocation Algorithms 55

3. R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad
Memory: A Design Alternative for Cache On-chip Memory in Embedded Systems.
In Proc. of 10th International Symposium on Hardware/Software Codesign, Col-
orado, USA, May 2002.

4. N. Bellas, I. Haji, C. Polychronopoulos, and G. Stamoulis. Architectural and
Compiler Support for Energy Reduction in Memory Hierarchy of High Performance
Microprocessors. In Proceedings of the International Symposium on Low Power
Electronics and Design ISPLED, Monterey, CA, USA, August 1999.

5. M. Berkelaar. lp solve: a Mixed Integer Linear Program solver. available from:
ftp://ftp.es.ele.tue.nl/pub/lp solve.

6. CPLEX. CPLEX Ltd. www.cplex.com.
7. Department of Computer Science XII, University of Dortmund. ENCC.

http://ls12-www.cs.uni-dortmund.de/research/encc.
8. Department of Computer Science XII, University of Dortmund. MEMSIM.

http://ls12.cs.uni-dortmund.de/∼wehmeyer/LOW POWER/memsim doc.
9. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide To the

Theory of NP-Completeness. Freeman, New York, USA, 1979.
10. S.C.A Gordon-Ross and F. Vahid. Exploiting Fixed Programs in Embedded Sys-

tems: A Loop Cache Example. Computer Architecture Letters, January 2002.
11. J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, 3. edition, 2003.
12. M. Kamble and K. Ghosh. Analytical Energy Dissipation Models for Low Power

Caches. In Proceedings of the International Symposium on Low Power Electronics
and Design ISPLED, Monterey, CA, USA, August 1997.

13. L.H. Lee, B. Moyer, and J. Arends. Instruction Fetch Energy Reduction Using
Loop Caches For Embedded Applications with small Tight Loops. In Proceedings
of the International Symposium on Low Power Electronics and Design ISPLED,
San Diego, CA, USA, August 1999.

14. P. Marwedel, L. Wehmeyer, M. Verma, S. Steinke, and U. Helmig. Fast, predictable
and low energy memory references through architecture-aware compilation. In
Proceedings of the Asia and South Pacific Design Automation Conference ASPDAC
2004 (to appear), 2004.

15. MOTOROLA. Motorola Inc. http://e-www.motorola.com/files/shared/doc/
selector guide/SG1001.pdf.

16. P.R. Panda, N.D. Dutt, and A. Nicolau. Memory Issues in Embedded Systems-On-
Chip. Kluwer Academic Publishers, Norwell, MA, 1999.

17. P. Pettis and C. Hansen. Profile guided code positioning. In Proceedings of the
ACM SIGPLAN’90 Conference on Programming Language Design and Implemen-
tation. ACM SIGPLAN, June 1990.

18. S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An Accurate and Fine
Grain Instruction-Level Energy Model Supporting Software Optimizations. In Pro-
ceedings of International Workshop on Power And Timing Modeling, Optimization
and Simulation PATMOS, Yverdon-Les-Bains, Switzerland, Sep. 2001.

19. S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel. Assigning Program and Data
Objects to Scratchpad for Energy Reduction. In Proceedings of Design Automation
and Test in Europe DATE, Paris France, March 2002.

20. C.-L. Su, , and A.M. Despain. Cache Design Trade-Offs and Performance Opti-
mization: A Case Study. In Proceedings of the International Symposium on Low
Power Design ISLPD, pages 63–68, 1995.



56 M. Verma, L. Wehmeyer, and P. Marwedel

21. H. Tomiyama and H. Yasuura. Optimal Code Placement of Embedded Software for
Instruction Caches. In Proceedings of the 9th European Design and Test Conference
ET&TC, Paris, France, March 1996.

22. S.J.E. Wilton and N.P. Jouppi. CACTI: An Enhanced Cache Access and Cycle
Time Model. IEEE Journal of Solid-State Circuits, 31(5), May 1996.



Online Prediction of Battery Lifetime for
Embedded and Mobile Devices

Ye Wen, Rich Wolski, and Chandra Krintz

Computer Science Department, University of California, Santa Barbara
{wenye, rich, ckrintz}@cs.ucsb.edu

Abstract. This paper presents a novel, history-based, statistical tech-
nique for online battery lifetime prediction. The approach first takes a
one-time, full cycle, voltage measurement of a constant load, and uses it
to transform the partial voltage curve of the current workload into a form
with robust predictability. Based on the transformed history curve, we
apply a statistical method to make a lifetime prediction. We investigate
the performance of the implementation of our approach on a widely used
mobile device (HP iPAQ) running Linux, and compare it to two similar
battery prediction technologies: ACPI and Smart Battery. We employ
twenty-two constant and variable workloads to verify the efficacy of our
approach. Our results show that this approach is efficient, accurate, and
able to adapt to different systems and batteries easily.

1 Introduction

Power is a critical resource for battery-powered embedded systems and mobile
devices. As such, battery life must be monitored and managed within these
systems to ensure maximum efficiency and effective prioritization on behalf of
system users. While compile-time optimization of application code can reduce
the battery consumption of individual applications, operating system support is
needed to manage the combined power consumption of multiple programs exe-
cuting in concert. Providing this support at the operating system level requires
the ability to predict, accurately, remaining battery life given a dynamically
changing system workload.

In this paper, we investigate an on-line statistical approach to battery life-
time prediction that combines recently observed power dissipation “history” with
pre-computed off-line benchmark measurements. By dynamically incorporating
on-line measurements, our approach is able to make predictions that take into ac-
count varying workloads, the “recovery effect” that batteries experiences when
they are unloaded, and the charging-cycle effect that changes battery perfor-
mance as batteries are repeatedly recharged.

Much of the prior work investigating battery dissipation and prediction is an-
alytical, simulation based, or both [4, 6, 1, 11]. These systems attempt to provide
accurate dissipation predictions off-line, for use in design or analytical contexts.
Efficient analytical methods such as [14], and [15] consider the problems of on-
line prediction, but do not include the statistical components needed to rapidly
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analyze dynamically changing workloads and operating conditions. While some
approaches have considered statistical characteristics in combination with ana-
lytical models, they focus exclusively on battery dissipation in isolation [13, 16].
To be useful in an operating system resource management context, however, a
battery lifetime prediction technique must be

– fast enough to make predictions so that real-time or near real-time decisions
can be made,

– power-efficient enough to be run on the battery-powered device itself,
– dynamically adaptive so that it can take into account different user work-

loads, and environmental operating conditions (e.g. ambient temperature,
battery recharge count, etc.), and

– portable so that a variety of battery and device combinations can be sup-
ported by the same operating system.

To address these challenges, our approach treats operating system power
measurements from the battery as coming from a “black box.” We use off-line
profiling of the installed battery to establish a reference signature for its observed
dissipation curve. We then use fast, on-line regression to predict deviations from
this signature. Thus, our method uses benchmark data from the battery (in
the form of a reference signature) to parameterize a statistical model that we
evaluate on-line. Because the system uses measurements taken in the operating
system, it is portable between devices and batteries. By using immediate on-line
history, the system adapts to dynamic changes in system conditions.

We investigate the efficacy of our work by empirically evaluating our meth-
ods using the popular HP iPAQ running the Linux operating system. All of the
necessary data for our method is obtained through standard hardware and op-
erating system interfaces provided by Familiar Linux, a commonly used Linux
implementation for iPAQ devices. We compare our results to those provided by
two native Linux battery lifetime prediction systems: the Advanced Configura-
tion and Power Management Interface (ACPI) and Smart Battery [5]. While
considered to provide very rough estimation of battery lifetime, these utilities
nonetheless meet the requirements that we describe above. That is, they im-
plement fast, on-line, portable prediction method at the operating system level.
Our method combines the attractive online features of ACPI and Smart Battery
with prediction accuracy, and thus constitutes an fast, accurate, and adaptive
prediction mechanism that can be used as the basis for “power-aware” operating
system design.

To describe this work in greater detail, the remainder of this paper is orga-
nized as follows. In Section 2, we describe the methodology more completely.
Section 3 provides an empirical evaluation of our method through direct exper-
imentation and in Section 5 we draw brief conclusions from our investigation.

2 History-Based Battery Lifetime Prediction

Our methodology consists of three components: a reference signature from the
battery, a curve transformation function that changes coordinates to make fast
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prediction possible, and a fast linear fitting technique that makes predictions in
the transformed space. The baseline observation that makes this methodology
possible is that for constant but differing workloads, the “shape” of the battery
dissipation curve is similar. Thus, using the trajectory produced by one workload,
the lifetime implied by other constant workloads, can be predicted accurately. By
transforming the coordinate space into one where simple linear fitting techniques
are applicable, the predictions can then be made using computationally efficient
techniques.

2.1 Linearity, Reference Curve and Voltage Curve Transformation

To determine the reference signature of a battery, we execute constant-power
workloads on a quiescent system. A constant-power workload consists of repeated
executions of single program instance from full battery charge until battery ex-
piration. We describe the individual program instances in Section 3, but for the
purpose of describing our methodology, the salient feature is that the power
drain is constant with respect to the application workload, e.g., there is only a
single program in each workload.

Linux permits application access to the voltage level reported by the battery
on the iPAQ. During each complete benchmark run, the power level is recorded
periodically to produce a drain trajectory. This trajectory can be expressed by
function F : t → v, mapping time t to battery voltage level v. v’s value is
between the open circuit voltage (approximately the voltage when the battery
is fully charged) and the cut-off voltage (the voltage when the battery dies).
In Figure 1(left), we show two typical voltage curves, which are obtained by
repeatedly running benchmark programs (IMem – a memory read benchmark –
and IMemWC – a cache-write benchmark – in this case) on an HP iPAQ until
the battery dies. The x-axis represents the time and y-axis represents the voltage
level. We describe the full experimental setup and benchmark information more
completely in Section 3.

The voltage curves in the left graph of Figure 1 are inherently non-linear due
to the internal electrochemical characteristics of the battery. This non-linearity
limits our ability to predict remaining battery life efficiently. If we treat the
trajectories as invertible continuous functions, however, we can make the obser-
vation that

V = F1(t1) = F2(t2) (1)

for voltage V , and dissipation functions F1 and F2. If we use Γ1,2 to represent
the relationship between t1 and t2 under F1 and F2 for any voltage level V , we
have:

F1(Γ1,2(t2)) = F2(t2) (2)

Furthermore, we can see that the voltage curves of constant workloads have
very similar shapes. Based on this shape-similarity, we make the further simplify-
ing assumption that the timing relationship Γi,j for any two constant workloads,
Fi and Fj , is a series of functions with the same form but different parameters,
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Fig. 1. Timing relationship between two voltage curves of constant workloads. F1 is the
curve of the workload that is generated by repeatedly running benchmark IMem. And
F2 is the curve of benchmark IMemWC. The left graph shows that for some voltage
value V , F1 reaches V at time t1 and F2 reaches V at time t2. The right graph shows
the linear relationship between t1 and t2 for any V

denoted as Γ (φi,j , t), where φi,j is a specific set of parameters for Fi and Fj . For
the curves in Figure 1, we now have:

F1(Γ (φi,j , t2)) = F2(t2) (3)

So:
Γ (φi,j , t2) = F−1

1 (F2(t2)) (4)

We plot the Γ function for curves F1 and F2 in the right graph of Figure 1.
The x-axis is the time of F2 and the y-axis is the time of F1. In this graph, the
Γ curve appears very close to a linear function. Our experiments show that this
strong linearity actually exists between any pair of constant workloads. Figure
2(left) shows another three Γ curves for pairs of constant workloads. The axes
are similar to those in the right graph of Figure 1.

If we use one specific voltage curve of constant workload as the reference,
denoted as Fref , the Γ function between any curve F and the reference curve
Fref can be expressed by:

Γ (φ, t) = F−1
ref (F (t)) (5)

Since Γ can be approximated by linear function, let φ = (a, b), and we have:

F−1
ref (F (t)) = a ∗ t + b (6)

Note that here a and b vary for different constant workloads. The Γ function
actually shows not only the timing relationship between two workloads, but also
indicates the size of the load: the larger the slope of the curve, the higher is the
power consumption and the shorter does the battery lifetime extend. We refer to
the Γ function as the transformed voltage curve. Using a reference voltage curve,
we can transform any non-linear voltage curve of constant workload into a linear
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Fig. 2. Timing relationship (Γ function). The left graph plots the timeing relationship
for three pairs of constant loads: Reg vs. IMem, dijkstra vs. IMem, video vs. IMem.
The right graph shows both the voltage curve and the transformed curve (also based
on IMem) for real.load.5

form, which is friendly to fast statistical methods, e.g., linear curve fitting, for
remaining battery lifetime prediction.

In real life, workloads may not be constant. We can approximate the power
consumption of a variable workload with a piecewise constant curve. Such an
approximation is reasonable since the tasks of a workload are composed of con-
secutive execution of a sequence of operations, whose power consumption can
be regarded as constant. Given this assumption, the transformed voltage curve
for a variable workload should appear as a piecewise linear curve under ideal
conditions.

However, the actual voltage curve of a variable load also exhibits the recovery
effect. The recovery effect refers to the phenomenon that a battery regains some
capacity when the load decreases. Through observation, we find that the recov-
ery effect occurs whenever the load changes. If the load decreases, the voltage
will “jump up” to a higher value instead of monotonically decreasing. If load
increases, the voltage will “jump down” sharply. On the transformed curve, the
“jumping” direction is inverted because an advance in time equates to a drop
on voltage. Figure 2(right) shows the original voltage curve (from top-left to
bottom-right) of a variable workload real.load.5 and its transformed curve (from
bottom-left to top-right) in the same graph. Both curves share the same x-axis,
which represents the workload execution time. The left y-axis shows the volt-
age level for the voltage curve; the right y-axis shows the corresponding time
for the transformed voltage curve given the reference curve. Both curves exhibit
fluctuations due to the recovery effect.

Despite the recovery effect and the use of piecewise linear estimation, simple
statistical methods can still achieve accurate prediction on the transformed curve
for variable workloads. We present this data as part of our empirical evaluation
in Section 3. In addition to the recovery effect, our curve transformation method-
ology also captures a number of other challenging battery characteristics that
often limit prediction accuracy performance in other techniques [9], e.g., the rate
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capacity effect (when the battery is discharged under different workloads, it reg-
isters different capacities) and the cycle aging effect (battery capacity gradually
diminishes after repeatedly being discharged).

Our transformation actually is equivalent to a coordination system switch
(from (time, voltage) to (time, time)). Since the reference curve is a one-to-
one function, we don’t lose any information during transformation. Thus, the
transformed curve keeps all of the characteristics of the battery discharge that
the original voltage curve describes. Based on transformed curve, and due to the
nature of the statistical methods we use, our prediction methods are insensitive
to all these non-ideal phenomena and can still make an accurate prediction.

2.2 Prediction Methods

In the remainder of the paper, we refer to the transformed voltage curve as the
history curve since it provides us with a history of battery consumption by the
system up to the point at which we make a prediction of remaining battery
life. In addition, to make this prediction, we considered a number of different
methods. We evaluate each method using the prediction error of each. Assume
that function Pt0 is the function we use to model the history curve, where t0 is
present time. Let ve be the threshold voltage with which the battery is considered
exhausted. Prediction error can be expressed by:

error =
∣∣∣∣Lp − L

L

∣∣∣∣ =

∣∣∣∣∣
P−1

t0 (ue) − L

L

∣∣∣∣∣ (7)

where ue = F−1
ref (ve), Lp is the predicted lifetime and L is the actual measured

lifetime. Figure 3 demonstrates the calculation of prediction error.

Fig. 3. Prediction error calculation

The first prediction method that we considered uses the average power con-
sumption rate of the history curve to estimate that of the future. According to
Equation (6), the slope at any point of the transformed voltage curve indicates
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the magnitude of the power consumption rate (the ratio between P and Pref ). As
such, we can model future power consumption at time t as Pt0(t) = kt0t, where
kt0 is the mean slope of the history curve before t0. We refer to this method
as Mean Slope Prediction(MSP). We then improved this method by making
a prediction line that begins at the current point (t0, G(t0)) instead of (0, 0):
Pt0(t) = kt0t + G(t0) − kt0t0. We call it Mean Slope Point Prediction(MSPP).

We next considered a model that uses linear Least Square Fit(LSF)[12]. As-
sume that klsf and blsf are the slope and intercept of the linear regression, the
prediction function will be Pt0(t) = klsf t+blsf . We call this method LSF Predic-
tion(LSFP). As we did for Mean Slope Prediction, we also consider the efficacy
of using LSFP when the prediction line starts at the current time (as opposed to
the beginning of time (0, 0)). We call this method LSF Point Prediction(LSFPP),
and implement it as Pt0(t) = klsf t + G(t0) − klsf t0.

All four of these methods are computationally efficient. For example, using
method LSFPP or LSFP, a single prediction for a median-sized voltage curve
(about 4, 000 readings) takes 250 milliseconds on average on the 206MHz Stron-
gARM processor of the HP iPAQ; this is equivalent to about 0.25 joule of energy
consumption. Since MSPP and MSP have lower computational complexity and
they can be computed incrementally, they consume even less energy.

Given the history curve and prediction functions, the final question that we
must address concerns the length of history that is required to make the best
prediction. In Section 3.3, for each prediction method, we empirically evaluate a
range of different history sizes to answer this question. This study also gives us
insight into how well our techniques perform given a small amount of history.

Fig. 4. Prediction procedure

Figure 4 summarizes the procedure of making a prediction. The current,
sampled, voltage curve, which is a sequence of (t, v) pairs (t is a timestamp,
v is voltage), is transformed using the reference curve. Next, the above pre-
diction methods are applied to the transformed curve, which is a sequence of
(t, tref ) pairs (tref = F−1

ref (v)), and a prediction is made. Note that the reference
curve must also be transformed from a sequence of discrete pairs to a continuous
mathematical form using curve fitting or interpolation. Note also that the on-
line part of the prediction procedure includes the computation of the inverse of
reference curve function. We use the Newton-Raphson method [12] to make the



64 Y. Wen, R. Wolski, and C. Krintz

approximation. This method is also very efficient practically. In our experiment,
it takes about 3 iterations on average to get a result with an error within 0.001.

3 Evaluation

We evaluated our prediction methods using two models of HP iPAQ: H3650 and
H3835. H3650 is equipped with a 1000 mAh Danionics DLP 305590 lithium-ion
polymer battery and H3835 has a 1400 mAh Danionics DLP 345794 battery [3].
Since the results for these two models are similar, we only present the H3835
results in this paper; the trends, however, are the same.

We installed Familiar Linux v0.6.1 [10] and the Opie environment [10] on the
iPAQ to perform all experiments. Opie provides the graphical user interface and
a set of applications such as games, a media player, and a calendar, that we use as
benchmarks. The iPAQ has an internal voltage sensor reporting accurate battery
voltage measurements via Linux “/proc” system. We implemented a logging pro-
gram that reads the current battery voltage from “/proc/asic/battery”(ACPI-
like battery status report) into a file stored locally. For each benchmark, we first
fully charge the iPAQ battery. We then start the workload benchmark and the
logging program simultaneously. The logging program runs periodically with an
interval of 6 seconds. We use this empirically selected interval since it is short
enough to catch significant changes in voltage and long enough to reduce inter-
ruption. The benchmark runs continuously until the battery dies.

3.1 Workload Benchmarks and Reference Benchmark

We generated the constant workload by repeatedly running a single benchmark
program, for which one-time execution time is very short (within 4 minutes).
We evaluated 14 such programs. They include the benchmarks that we hand-
coded to execute of a single type of instruction (Reg (register instructions only),
IMem(loads, out of cache), IMemC (loads, in cache), IMemW (stores, out of
cache) and IMemWC (stores, in cache)). In addition, we included dijkstra, fft,
ispell, jpeg, sha and susan, from the MiBench Suite [7], and three multimedia
programs: audio, video and videoaudio. Each of the MiBench programs repre-
sents one of six application categories: network, telecommunication, office, con-
sumer, security and automotive, covering a broad range of typical embedded
system applications. The three multimedia programs play MPEG format audio,
video and video with audio respectively. All of these programs exercise many
hardware functions in an embedded or mobile device, e.g., CPU, memory, flash,
audio/video components, and backlight.

We generate part of the variable workloads by simulating the real usage of
a PDA. The simulation program is composed of a set of hand-held device ap-
plications (e.g. multimedia, note-taking, etc) provided by the Opie toolkit [10].
Each application runs a specified period of time during the simulation. Differ-
ent patterns of variable workloads are generated by different configurations of
the simulation program. The simu.random workload is generated by randomly
executing one of these applications in uniform distribution. The other three
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Table 1. Workload description. IMem is used to generate reference curve exclusively

Benchmarks Type Comments
Reg constant: single instruction register instruction ONLY
IMem constant: single instruction memory read instruction, 100% cache miss
IMemC constant: single instruction memory read instruction, 100% cache hit
IMemW constant: single instruction memory write instruction, 100% cache miss
IMemWC constant: single Instruction memory write instruction, 100% cache hit
dijkstra constant: single operation shortest path algorithm benchmark
fft constant: single operation Fast Fourier Transform benchmark
ispell constant: single operation a fast spelling check benchmark
jpeg constant: single operation JPEG encoder/decoder benchmark
sha constant: single operation SHA secure hashing algorithm benchmark
susan constant: single operation image recognition benchmark
audio constant: single operation play a 210-second MP3 audio file with audio

output, back light off
video constant: single operation play a 142-second MPEG1 video file without

audio, back light on
videoaudio constant: single operation play a 142-second MPEG1 video file with

audio output, back light on

simu.random variable simulated random workload, no sleep time
simu.30 variable simulated random workload, 30% probability

to sleep
simu.50 variable simulated random workload, 50% probability

to sleep
simu.70 variable simulated random workload, 70% probability

to sleep
real.load.1 variable 5 real workloads, voltage curve recorded
. . . when PDA is used by people
real.load.5

workloads (simu.30, simu.50 and simu.70 ) are generated in the following way.
The simulation program continuously allocates time slots of random length to
either an idle mode or a specific set of applications that are specialized in sim-
ilar functions (e.g. audio/video), according to a predefined distribution. During
each non-idle time slot, the applications within the specific set are also executed
randomly following a predetermined distribution. In this way, simu.30 keeps the
device busy during 70% of the time on average. Similarly, simu.50 and simu.70
have a device usage frequency of 50% and 30% respectively.

We also obtained 5 real variable workloads, whose voltage curves are recorded
when users played with the iPAQ in a common way, e.g., playing games, viewing
pictures and videos, listening to music, and making a schedule using the calendar.
These workloads were obtained by loaning the iPAQ to individual students and
then recording the power dissipation each student induced. Table 1 summarizes
the total 23 constant and variable workloads.

Finally, we pick the IMem benchmark to generate the reference curve. A key
contribution of our method is that any constant-workload benchmark can be
used to generate reference curve; the fluctuations in a variable workload require
smoothing if it is to be used as the reference curve. The reason for this is that our
method relies on similarities in the shape of the curves; all constant-workload
benchmarks exhibit similar shape, as such, they can be used as the reference
curve with statistically similar results.

Since the sampled reference curve is composed of a sequence of discrete pairs
(time, voltage), we cannot use it to compute the transformed voltage, F−1

ref (v),
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since it is not expressed in terms of v. Instead, we model the reference curve off-
line using a high order polynomial and polynomial least square fit [12]. The IMem
curve can be fit by a polynomial of order 15 (the coefficient of determination
of the fit, R2, is 0.99955). We then use this polynomial as the reference curve
function on-line to make each prediction.

3.2 Results of Prediction for Constant Workloads

Given the voltage curve of a constant load, we first generated the history curve
(transformed curve) using the reference polynomial. Then, for every 50th point
(approximately 5 minutes), we apply each of our prediction methods, LSFPP,
LSFP, MSPP, MSP, to make a prediction. We next calculate the error for each
prediction point using Equation 7. Finally, we have a sequence of prediction
errors (“moving errors”) for the entire battery lifetime.

Fig. 5. Prediction performance for constant loads. The left graph shows the trans-
formed voltage curve and moving errors for Reg. The right graph shows the average
prediction errors for all constant loads and all methods

Figure 5(left) shows the history curve (solid line curve) and the corresponding
“moving errors” (marked-line curve) for the Reg benchmark. Both curves share
the same x-axis, which represents time. The transformed voltage curve uses the
left y-axis that shows the transformed voltage in terms of reference curve time.
The error curve uses the right y-axis that shows the error value. As we can see
from the graph, all prediction errors are within 5%.

In Figure 5(right), we show the average prediction error for each benchmark
and each method. The y-axis is average percentage error. Except for the three
media benchmarks (audio, video, and videoaudio), the predictions for the con-
stant workloads have an average error below 5% for all methods. The predic-
tions for the media benchmarks have average errors around 10% due to the local
fluctuations of power consumption when they run. Among the four prediction
methods, LSF-based methods perform a slightly better than MS-based methods.
This is because least square fit provides a better model for linear data than mean
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slope does. LSFPP is the best method among all. Overall, the performance of
all the four methods is similar.

3.3 Results of Prediction for Variable Workloads

We follow the same procedure to make predictions for variable workloads. A
typical voltage curve and transformed voltage curve for variable workload is
shown in Figure 2(right).

Fig. 6. Prediction performance for different history size. This figure shows the mean,
max and minimum of “moving errors” of the 4 methods for real.load.5 benchmark,
using different history size

First, we explore how much history we need to make the best prediction. We
tried the four methods using different history lengths: a history window with
last 50 sample points, the last 1/5 , 1/4, 1/3, 1/2 of history, and all of the
history. Figure 6 shows the mean (shown as the markers), maximum (shown as
the top of the bar) and minimum (shown as the bottom of the bar) of prediction
errors for real.load.5 benchmark. The y-axis shows the value of prediction errors
(percentage) using a log scale. The data reveals that the prediction based on
the entire history has both the smallest average error and error range for most
methods. We found similar results for all other benchmarks. This tells us that
the methods based on recent history are not able to make an accurate prediction
of the future. In the results that follow, we only use the entire history to make
a prediction.

We next compare the performance of our methods against that of ACPI, a
standard, commonly used, power management service that provides battery life
estimation [2], and Smart Battery’s rolling average algorithm [5]. The Famil-
iar Linux reports detailed battery status through “/proc/asic/battery” file. We
extract the ACPI-like battery life estimation directly from the file. We also simu-
late the Smart Battery’s rolling average algorithm using the battery information
from the file: at each prediction point, first calculate the average current within
last 1 minute; then take the division of present remaining battery capacity and
the average current as the present battery life estimation [5]. In Table 2, we show
the mean (column 2 and 4) and standard deviation (column 3 and 5) of predic-
tion errors using ACPI’s battery life estimation, Smart Battery’s rolling average
algorithm and our four methods using the entire history. Columns 2 and 3 show
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Table 2. Prediction performance of ACPI, Smart Battery (the rolling average) and
our methods based on entire history

real.load.5 IMemWC
Methods mean % stdev % mean % stdev %
ACPI 60.28 27.70 42.96 71.30
rolling average 60.16 28.36 40.55 71.39
LSFPP 21.29 65.63 3.65 1.67
LSFP 20.76 66.19 4.01 1.22
MSPP 14.19 19.74 3.44 1.96
MSP 14.16 19.85 3.44 1.99

Fig. 7. Prediction performance for variable workloads. The left graph shows the trans-
formed curve and moving errors for real.load.4. The right one shows the average pre-
diction errors for all variable loads and all methods. y-axis is in log scale

data for real.load.5, variable workload, benchmark; columns 4 and 5 show data
for IMemWC, constant workload, benchmark. Results for all other benchmarks
are similar; each of our four methods significantly outperforms ACPI and Smart
Battery’s rolling average for both constant and variable workloads.

Figure 7(right) shows the average prediction errors for all of the variable
workload benchmarks. At the first glance, it seems that LSF-based methods
perform very poorly for variable workloads. For example, LSFPP has an average
error of 205.68% for real.load.4.

A detailed analysis shows that the prediction by LSFPP has some huge spikes
in prediction error at the start time of the experiments when there is little history
available. Figure 7(left) illustrates the relationship between the transformed volt-
age curve and the “moving errors”. The axes have are similar to those in Figure
5(left). Before time 6000, there is no program running and the power consump-
tion is very low creating a line segment with small slope at the beginning of the
transformed voltage curve. The forecaster only knows about history and it makes
a prediction that the battery will last for a much longer time than actual will. Im-
mediately after some process starts to run, the curve goes up and the forecaster
begins to realize the actual power consumption. As such, the prediction error also
starts to drop. During the remaining time, the prediction error is much smaller.
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Fig. 8. Average prediction errors for variable workloads using a trim of 5%(left) and
inverted curve(right)

To isolate this initial noise in the “moving errors”, we calculate the mean
for the last 95% of prediction errors (we call it the trimmed prediction error).
That is, we discard the initial 5% (in terms of time) of the prediction errors to
allow each forecaster to calibrate. Figure 8(left) shows the mean of the trimmed
prediction errors for all variable workloads; the errors are smaller than without
trimming. For example, the average prediction error of real.load.4 by LSFPP
drops to 22.08%. These results indicate that for variable workloads, MSPP and
MSP methods outperform LSFPP and LSFP.

Since the least square fit is not symmetric for the x and y axes (it tries to min-
imize the sum of distance squared along the y-axis), we also investigated the ef-
ficacy of our methods on the curves with switched x and y axes. We call the new
curves “inverted transformed voltage curve”. Since it is meaningless to average the
inverse of a slope that represents the power consumption, we do not apply MSPP
and MSP methods to the inverted curve. We show the results in Figure 8(right)
as average prediction error using variable workloads for both trimmed and non-
trimmed LSF methods using the inverted transformed voltage curve. The results
indicate that the prediction performance using the inverted curve is more stable.
In addition, it does not suffer from the early-stage spikes in the “moving errors”;
as such, it is an alternative to trimming. In general, LSFPP outperforms LSFP.

In summary, we find that LSF-based methods are slightly better than
MS-based methods for constant workloads. For variable workloads, MSPP per-
forms best. In general, we believe MSPP is the best method for our online battery
lifetime prediction. MSPP is cheaper to compute and even though it is slightly
less accurate under constant conditions, it is less sensitive to variability in the
measurement history.

4 Related Work

Battery life estimation, an integral component of power management systems,
is provided in many mobile devices via both hardware and operating system
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support, such as that specified by Advanced Power Management (APM) [8] and
more recently by Advanced Configuration and Power Interface (ACPI) [2]. In
particular, ACPI, to which we compare our results, uses the division of remaining
battery capacity and present rate of battery drain to estimate remaining battery
life [2]. Smart battery is another similar technology that estimates battery life
given a user-specified rate (e.g. present rate) or rolling average over a fixed
interval (normally 1 minute) [5]. Such simple approaches to prediction consider
only a very short discharge history and thus can be highly inaccurate, as we
show in 3.3.

Another area of related research is model-based battery life estimation. Given
the discharge profile of the entire lifetime of the battery, a well-designed bat-
tery model can give highly accurate battery life estimation. One such accurate
model, described in [4], uses the low-level electrochemical phenomenon of bat-
tery discharge. This model is commonly used as a simulator to verify other
battery models. More efficient simulation models include PSPICE-based mod-
els [6], discrete-time VHDL models [1] and a Markov chain model [11]. In [14]
and [15] two efficient analytical models are proposed. The model described in
[14], builds a relationship between current profile and battery lifetime. In [15], a
fast prediction model is used to estimate the remaining battery capacity, which
takes into account the recharge cycle aging and temperature. An approach for
combining analytical models and statistical methods is proposed by [13].

These models are different from our method in that they require the complete
discharge profile during a battery’s life to make estimation. In other words, they
make a “calculation” instead of a “prediction”. Our method predicts battery life
without knowledge of future workload. Model-based methods have other limi-
tations to make them unsuitable for online, dynamic and adaptive battery life
prediction, such as the need for large number of parameters and high computa-
tion cost (especially for simulation models).

In the work most related to ours [16], the authors estimate battery lifetime
by exploiting the linear relationship between the system load and the drain
time required to reach a specified voltage. They then apply statistical methods
to make a prediction. This work differs from our work in two ways. First, the
linearity they exploit is between the load and the time at which a certain voltage
level is reached. As such, they must obtain a large number of load-versus-lifetime
samples to generate an accurate curve fit. Using our method, only one reference
voltage curve (generated off-line) is required. Second, this prior work studies
only the lifetime estimation for constant workloads. It is not clear whether it
can be applied to variable workloads. Our method naturally extends to variable
workloads and we empirically evaluate it using both workload types.

5 Conclusions

We investigate battery lifetime prediction using a purely statistical method and
only data that is readily available from the OS /proc file system. By using a
statistical technique, our approach takes into account variations in workload,
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application profile, and battery charge rates, particularly those caused by the
recovery of the battery during idle periods. We describe a coordinate transforma-
tion that converts a dynamic voltage curve into a form that enables more robust
prediction of future behavior. We implement and empirically evaluate two vari-
ations of statistical methods on the transformed curve to make predictions. The
experimental results show that we are able to achieve high prediction accuracy
under both constant and variable workloads.

Our approach is simple, efficient, accurate, and flexible. In addition, it can
be easily incorporated into current operating systems on popular hardware. As
part of future work, we plan to investigate combinations of different prediction
methods to further improve the accuracy of our method. Since there is not a
universal method that is best for all cases, we are also seeking a way to leverage
the power of different methods.
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Abstract. Embedded devices have hard performance targets and severe
power and area constraints that depart significantly from our design in-
tuitions derived from general-purpose microprocessor design. This paper
describes our initial experiences in designing Synchroscalar, a tile-based
embedded architecture targeted for multi-rate signal processing applica-
tions.

We present a preliminary design of the Synchroscalar architecture and
some design space exploration in the context of important signal process-
ing kernels. In particular, we find that synchronous design and substan-
tial global interconnect are desirable in the low-frequency, low-power do-
main. This global interconnect enables parallelization and reduces pro-
cessor idle time, which are critical to energy efficient implementations
of high bandwidth signal processing. Furthermore, statically-scheduled
communication and SIMD computation keep control overheads low and
energy efficiency high.

Keywords: Low Power Processor, 802.11(a), Programmable DSP Pro-
cessor, tiled-based architectures, embedded processors.

1 Introduction

Next-generation embedded applications demand high throughput with low power
consumption. Current approaches often use Application-Specific Integrated Cir-
cuits (ASICs) to satisfy these constraints. However, rapidly evolving application
protocols, multi-protocol embedded devices, and increasing chip NRE costs all
argue for a more flexible solution. In other words, we want the flexibility of a
programmable DSP with energy efficiency more similar to an ASIC. We propose
the Synchroscalar architecture, a tile-based DSP designed to efficiently meet
the throughput targets of applications with multi-rate computational subcom-
ponents.

In designing Synchroscalar, we focused on three key features of ASICs that
lead to their energy efficiency – high parallelism, custom interconnect, and low
control overhead. Parallelism is important in that it allows the frequency of an
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architecture to be reduced linearly with investment in logic, modulo communica-
tion. This linear reduction, when coupled with voltage scaling, yields a quadratic
decrease in power and a linear decrease in system energy. Low communication
latency, however, is important in maintaining the parallelism necessary for these
energy gains. ASICs accomplish low latency through custom interconnect. We
find that, in the low frequency domain, a tile-based processing architecture can
use segmentable global busses to achieve low latency with high energy efficiency.
Control overhead of the busses is kept low by using statically scheduled segmen-
tation and data motion. Control overhead of the tiles can be reduced by grouping
columns into SIMD execution units.

In the remainder of this paper, we provide an overview of the Synchroscalar
architecture to establish the context of our study. Then we provide some simple
tile and interconnect models which we used to guide our design. We use these
models to conduct an analysis of FIR, FFT, Viterbi, and AES kernels running on
different points in the design space. We discuss our intuitions from this analysis
and conclude with future work for our project.

2 Synchroscalar Architecture

In this section, we introduce the proposed Synchroscalar architecture and the
rationale behind it. As noted in the previous section, we were motivated by
the need for an embedded architecture with the flexibility of a general purpose
processor (DSP) and the power efficiency of an application specific integrated
circuit. We examined ASIC implementations of Viterbi, FFT, AES, FIR and
found that the key sources of the power efficiency of an ASIC are

– Parallelism, multiple clock and voltage domains
– Customized interconnect mirroring the dataflow inherent in the computation
– Distributed memory to provide high bandwidth
– Customized functional blocks to implement the computation
– Absence of instructions, removing instruction cache accesses and decode logic

If we want to approach the efficiency of an ASIC, our architecture should
retain as many of the key strengths of an ASIC as possible. This directs us
towards a tiled-based multiprocessor architecture with multiple clock and voltage
domains, reconfigurable interconnect, and low-overhead SIMD control.

Abstractly, Synchroscalar is a two dimensional array of processing elements
(PEs), each column potentially operating at different fixed frequencies and hence
voltage. There is a single vertical bus connecting the elements in a column, and
these vertical buses are connected by a single horizontal bus for communication
between columns. In reality, in order to reduce the distance between PEs in a
single column, the column is folded over. There are PEs on both sides of the
vertical bus. That is the basis for Synchroscalar, as shown in Figure1 (we do not
plan to support dynamic frequency/voltage scaling at present). Because of the
data-parallel nature of computation, each PE can be viewed as one functional
unit of a SIMD machine. There is a SIMD controller for each pair of columns.
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Fig. 1. The Synchroscalar Architecture

Each PE (tile) has a single DSP engine with two functional units, SRAM, register
file, and communication interfaces. For brevity, we will refer to this cluster of
bus, two columns, and SIMD controller as a single column. Although the tiles are
SIMD, the communication patterns are not identical, so programmable engines
are required for controlling communication.

2.1 Programming Model

The architecture of Synchroscalar is motivated by Synchronous Dataflow (SDF)
model of computation [2, 3, 4]. DSP design environment tools created by Synop-
sys and Cadence use this model.

SDF is a subset of general purpose dataflow that restricts the number of
data values produced and consumed by an actor to be a constant. The restric-
tion imposed by the SDF model offers the advantage of static scheduling and
decidability of key verification problems such as bounded memory requirements
and deadlock avoidance [8] Synchroscalar can be viewed as a architecture to
support SDF computation model efficiently. This predictability is crucial to pro-
viding the generality of programming units while retaining much of the efficiency
of ASICs.

2.2 Clock and Voltage Domains

Clock and voltage domains are per-column, with the task parallelized within
the column. Tasks can be mapped to different columns depending on their com-
putational requirements. This mapping is crucial to performance, because once
set, the voltage and frequency of a column may not change. Mapping algorithms
must be developed to provide minimize communication and maximize power
savings. Computationally-intensive tasks are performed at the best available
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frequency and voltage that meets the performance requirements. Other tasks
can be mapped to columns operated at lower frequency and voltage.

We employ rational clocking[15] for the frequencies of different columns. If
fm and fn are the frequencies of two columns of PEs then fm/fn = M/N where
M and N are integers. While this allows a wide range of selection of frequencies,
the relation between the two frequencies provides the predictable communication
points between the domains required for statically scheduled communication.
Rational clocking eliminates the synchronization overhead with asynchronous
or GALS systems while still giving us the flexibility of different frequency do-
mains.

ASICs benefit from high-bandwidth, low-latency communication provided by
custom interconnects. We exploit low clock frequencies and static scheduling to
maximize throughput while minimizing latency. Static scheduling is required
to maintain guaranteed performance. Although the clock frequencies are low
enough to traverse a column in a single cycle, we segment the bus in order
to increase the usable bandwidth. Segment controllers are turned on or off by
signals from a central per-column segment controller. As shown in Fig.1, the
bus connecting two columns of PEs is partitioned into segments [23] by segment
controllers.

The column segment controllers are small state machines which can be re-
configured for each algorithm. By suitably controlling the segment controllers,
the bus can perform several parallel communications. For instance, if all the
controllers are turned off, the bus becomes a broadcast bus, all PEs able to re-
ceive the same data. Alternatively, two messages can pass between neighboring
columns using the same wires in different segments if the segment controller be-
tween them is on. The tasks are mapped to the tile architecture such that the
communication between the PEs is minimized. Highly communicating tasks are
assigned to neighboring PEs. This reduces the number of segments the data has
to travel, and hence saves power.

2.3 SIMD Control

In order to reduce the cost of instruction fetch and decode, a single SIMD con-
troller sends instructions to the PEs in a column. The SIMD controller performs
all control instructions, only forwarding computation instructions to the PEs.
To communicate data (used for conditional branches), the SIMD controller is
connected to the segmented bus with the PEs.

In order to use branch prediction, there needs to be a mechanism to squash
instructions that have already been sent to the processing elements. Instead,
we provide a short pipeline in the control unit to calculate branches quickly,
and delay instructions from reaching the processing elements. This introduces
a single-cycle stall for each conditional branch. For zero-overhead loops, there
is still no delay, because the PC is used for decision-making, not the actual
instruction. Our implementation incurs no extra overhead for these loops which
are critical to DSP performance.
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3 Framework

With the Synchroscalar architecture and motivation for context, we now present
a general framework within which to evaluate the surrounding design space.
The framework will use some simple first-order models of tile and interconnect
power, validated with datapoints in the literature and VHDL designs of custom
Synchroscalar elements. Although our models are by necessity abstract enough to
cover the design space, we argue that the important scaling effects are captured
and that our qualitative conclusions are valid.

3.1 Tile Model

We use the voltage frequency scaling given by the Newton’s alpha law
f= k* (Vdd−Vt)

α

V dd [14]. This equation gives the voltage-frequency scaling for a given
technology. We have modeled a ring oscillator in SPICE using the Berkeley
Predictive Technology Model (http://www-device.eecs.berkeley.edu/ ptm/) to
get a better feel for the acceptable range of supply voltage and threshold
voltage. This enables us to project the models into 90 nm and 45 nm
technology.

Our tile is based on the low power 16-bit VLIW DSPs similar to the Intel-
ADI MSA-based Blackfin[7] and the SPXK5 from NEC [19]. The minimum core
power is assumed to be 0.07mW/MHz similar to [19]. (We are in the process of
finishing a detailed VHDL model for the tile and and validating this assumption).
The SRAM power is given 0.02mA/MHz for 32kB of memory. This number was
obtained from the circuit given in [12], by scaling for technology and size.

3.2 Interconnect Model

The interconnect model is largely based on the data given in [6]. We find that
the gate and drain capacitances are orders of magnitude smaller than the wire
capacitance per unit length. We thus model only the wire capacitance. The
drain-source capacitance of the segmenters and the gate and drain capacitances
of the drivers are ignored. In 0.18u tech, the gate capacitance of a minimum
sized transistor is about 1-2fF [6]. This value is expected to remain constant
over shrinking process technologies. The projected value, in 0.13u tech, of wire
capacitance of a semi-global wire, per unit length is 387fF/mm. The chip length
is about 10mm and hence the wire capacitance is about 3870fF. This suggests
that even if the drivers and repeaters are 10-times the minimum size, their
capacitance is about 20fF. If there are 8 drivers for each bus, it adds only 160fF
to the wire capacitance.

We are in the process of completing VHDL models for the segment controllers,
SIMD controller and the communication interfaces. We plan to augment our
results with this in the future, but we believe that they are unlikely to change
the major trends in the results reported here.
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4 Applications

The main objective of this paper is an exploration of the design space defined
by the goals of the Synchroscalar architecture. Specifically, we are interested in
the impact of various architectural parameters such as the number of tiles, the
interconnect structure, the width of the buses on the power while meeting the
performance constraints of an application.

For an initial driving application, we choose the 54 Mbps 802.11(a) wireless
LAN physical layer. This is currently outside the scope of DSP processors and is
currently done with ASICs or DSPs with co-processors for the computationally
intensive applications. The computationally challenging aspects of 802.11(a) are
Viterbi decoder, FFT, and large FIR filters for equalization. We will evaluate
each of these function on the Synchroscalar architecture. We derive the perfor-
mance (throughput) targets for each function so that we can meet the 54 Mbps
data rate. In addition we also use the Advanced Encryption Standard (AES)
as a benchmark as it contains very different kind of computation, intensive on
bit manipulation and table look-ups, to see how our architecture fares on such
workloads.

The FIR filter is used in the equalization function in the OFDM receiver. We
model a 128-tap FIR filter and assume that the data rate is 64 Mbps. We also
model a 128 point FFT and assume the data rate is 256 Mbps. FFT and IFFT
are key components of the OFDM receiver. For the Viterbi Decoderwe assume
the constraint length for the decoder K=7 and the data rate is 54 Mbps. This
is the most computation intensive part of the OFDM receiver.

Our initial experimental procedure is as follows:

1. Write the function in C and verify using Blackfin Visual DSP simulation
environment

2. Replace the performance critical sections of the code with Blackfin assembly
code, to achieve optimal performance. This corresponds to the implementa-
tion on a single tile.

3. Next map the application into multiple tiles and using a homebrewed tool
to assist in pruning the search space.

4. Manually insert the communication instructions
5. Estimate the clock cycle count for the application.
6. Using the power model for the interconnect and the tile described in the

previous section, estimate the power. The parameterized power models were
described in Excel and that was used to generate the graphs reported in the
next section.

While an extensive cycle-level simulation infrastructure is currently under
development, we felt that hand-counts were appropriate for guiding the early
design of the architecture. In particular, our driving signal processing applica-
tions are very amenable to hand-analysis as their computations are focused on
a small number of kernels.
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5 Results

Our results focus on several key design questions. We explore the parallelism
available in each algorithm by varying the number of processing tiles, the com-
munication bandwidth necessary through varying global bus widths, and the
power efficiency of communication by exploring segmented buses.

5.1 Architectural Configurations

Figure 2 shows that as the number of tiles increases, there is the traditional
tradeoff between computation and communication, but performance is not our
goal. As the performance increases, we lower the clock frequency to maintain

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1x2 2x2 4x2 8x2

Number of Tiles

P
ow

er
 N

or
m

al
iz

ed
 to

 8
x2

FFT FIR Viterbi

Fig. 2. Power required as the number of tiles increases

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

32 64 128

Bus Width (bits)

P
ow

er
 (

W
)

2x2 4x2 8x2

Fig. 3. Viterbi Decoder power as bus width increases for various tile configurations



80 J. Oliver et al.

1.7

1.9

2.1

2.3

2.5

2.7

0 64 128 192 256 320

Bus Width

P
ow

er
 (

m
W

)

2x1 2x2 4x2 8x2

Fig. 4. FIR Filter power as the bus width increases for various tile configurations

a constant performance target, allowing a decrease in voltage. Note that this
is not done dynamically. Each experiment with a different number of tiles is
a completely different instance of the program. So, for each instance, we pro-
vide the lowest frequency / voltage to maintain the same performance. The
tradeoff is then between adding processors, providing a constant increase in-
power consumption, and reducing the voltage, providing a quadratic decrease in
performance.

All three applications observe an initial decrease in total power, but by the
8x2 tile configuration, the decreasing returns of parallelization is outweighing
the benefits voltage scaling. Thus we should provide either 2x2 or 4x2 tiles in
each column.

5.2 Impact of Bus Width

We then vary bus width. Data dependencies prevent effective overlap of commu-
nication and computation. This makes fast communication critical to efficiency,
else processor idle time will lead to wasted power. We note that processor power
accounts for the majority of our system power and that it is impractical to
turn processors on and off for periods on the order of a dozen cycles. Conse-
quently, we see in Figures 3 - 5 that increasing bus width decreases processor
idle time, which decreases system power. For FIR, the power begins increas-
ing again at 256 bits because FIR can not take advantage of the increased
width.

We further note that Amdahl’s law comes into play, and we see the greatest
power savings as we initially double bus width, cutting communication latencies
in half. As we continue to invest in bus bandwidth, processor idle time becomes
a smaller fraction of total run time. With cost as a concern, an area-conscious
design philosophy would be to choose a bus width of 64 or 128 bits, where we
get the most bang for the buck.
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5.3 Impact of Segmented Buses

Segmenting the bus allows two simultaneous, short-distance messages to use
the same bits in the wire. At the low frequencies of the Synchroscalar system,
segmenters are simple transmission gates with little signal restoration or latency
involved. Figure 6 shows that as the number of tiles in the column increases, the
savings from segmentation also increases, because there are more messages that
can traverse the bus at once. Dramatic savings are seen in Viterbi with 8x2 tiles.
Even at 4x2, the applications observe 17-54% power savings.

5.4 Discussion

Our simple design-space exploration has revealed several results that challenge
our intuitions of microprocessor design. Primarily, substantial global intercon-

Fig. 5. FFT power as the bus width increases for various tile configurations
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nect makes sense in this domain. Low operating frequencies allow signals to
traverse global buses in a single cycle. Data dependencies and tile power make
the latency of global communication critical. Furthermore, statically-scheduled
segmented buses allow the power and utilization of our interconnect to approx-
imate more specialized interconnects as used in ASICs.

6 Related Work

The challenges presented by next generation applications in terms of higher data
rates, lower power requirements, shrinking time-to-market requirements, and
lower cost has resulted in a tremendous interest in architectures and platforms
for embedded communication appliances in the past few years. Researchers have
approached the problem from several different angles. The DSP architecture
companies have proposed highly parallel VLIW machines coupled with hardware
accelerators or co-processors for the computation-intensive functions. The TI
OMAP is a good example of this category of solutions. The programmable logic
community has been very active in this area, as well, and there are numerous
architectural proposals that are derivatives of the standard FPGA. The SCORE
project at UC Berkeley [5] and the PipeRench project at CMU [16] are especially
noteworthy. They use the dynamic reconfigurability of field-programmable gate
arrays to exploit power and performance efficiency. The PLEIADES project at
UC Berkeley [21] proposes an interconnection of a low power FPGA, datapath
units, memory, and processors, optimized for different application domains. The
Pleiades researchers conclude that a hierarchical generalized mesh interconnect
structure [22] is most appropriate for their architecture because it balances both
the global and the local interconnect. Our results are in agreement with this
conclusion in general but given that we are targetting streaming computations
such as those encountered in a wirless transceiver, we have greater emphasis on
near-neighbor communication, so we have stayed away from a general mesh.

The adaptive SOC project at University of Massachussets [10] advocates an
array of processors connected by a statically scheduled communication fabric.
They allow different processors to operate at different clock frequencies and
demonstrate significant power savings on video processing benchmarks. The key
differences between this work and Synchronscalar are in the structure and con-
tents of the tiles and the memory architecture. In aSOC the tiles are hardwired
functional blocks such as Viterbi decoder, FFT, DCT etc., while in Synchroscalar
we assume programmable DSPs as the building blocks for the tiles. As a result,
the memory architecture of the system is radically different, changing the data
transfer and communication scheduling problem as well. But, it would be inter-
esting to compare the results between the Synchroscalar and aSOC approaches.

Recently, there has been a revival of interest in locally synchronous and glob-
ally asynchronous (GALS) approach to processor implementation [1] including
the use of multiple clock domains and multiple voltages [11] [17]. The key dif-
ference between GALS approach and the Synchroscalar approach is the restric-
tion of using only rationally related frequencies between different columns. This
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avoids the use of asynchronous FIFOs with their synchronization overhead. So,
synchroscalar is similar to Numesh [18], rather than the GALS approach.

Synchroscalar’s use of spatial rather than temporal flexibility is somewhat
inspired by the MIT RAW project [20] [9], but our focus on low power and
embedded applications is significantly different. Nevertheless, we expect to be
further inspired by the extensive compiler work from the RAW group. Although
their compiler algorithms are geared towards dynamic general microprocessor
algorithms such as speculation and caching, we expect to leverage their experi-
ences with program analysis and resource allocation.

Another project with a less embedded focus is the Imagine stream processor,
a tile architecture at Stanford [13]. Their experience with streaming applications
will also be invaluable to the design of our high-level software. Our emphasis on
Synchroscalar regions for power reduction and static scheduling of rationally-
clocked communication, however, will add significant challenges to our software
solutions. Furthermore, both Imagine and RAW are focused on large-system
scalability rather than the inexpensive design points of small, embedded systems.
We believe that Synchroscalar’s differing focus in cost and power will lead to
significantly new tradeoffs and design decisions.

7 Conclusion

The goal of this work was to guide the initial design of tile-based embedded ar-
chitecture. Through simple power models, we found that our original intuitions
regarding interconnect did not apply to the low-frequency, data-dependent na-
ture of our application domain. We found that wide, segmented global buses
give us some of the low latency and flexibility that conventional DSPs lack.
We plan to continue our evaluation of the Synchroscalar architecture through
extensive design and simulation of end-to-end applications. We are confident
that a novel architecture can meet the challenges of tomorrow’s embedded
applications.
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Abstract. Today’s wireless networks are highly heterogeneous, with mobile 
devices consisting of multiple wireless network interfaces (WNICs).  Since  
battery lifetime is limited, power management of the interfaces has become es-
sential.  We develop an integrated approach for the management of power and 
performance of mobile devices in heterogeneous wireless environments. Our 
policy decides which WNIC to employ for a given application and optimizes its 
usage based on the current power and performance needs of the system.  The 
policy dynamically switches between WNICs during program execution if data 
communication requirements and/or network conditions change. We have ex-
perimentally characterized Bluetooth and 802.11b wireless interfaces. Our pol-
icy has been implemented on HP’s IPAQ portable device communicating with 
HP’s HotSpot server [14].  The applications we tested range from MPEG video 
to email.  The results show that our policy offers a large improvement in power 
savings as compared to singly using 802.11b or Bluetooth while enhancing per-
formance.  

1   Introduction 

Mobile communications today has heterogeneous wireless networks providing vary-
ing coverage and QoS. Portable devices typically have more than one type of wireless 
interface built-in.  For example, most recent IPAQs have 802.11b, Bluetooth and 
ability to add a GPRS PCMCIA card.  To satisfy the bandwidth and QoS constraints 
of the applications, the mobile devices need to be able to seamlessly switch among 
their wireless network interfaces..  Additionally, the high communication and compu-
tation cost of applications is a burden on the battery life of portable devices. Capacity 
of a battery has not increased tremendously. Improvements of only a factor of 2-4 
have been observed during the past 30 years.  The ever-increasing need for battery 
lifetime in mobile devices demands a tighter control over its energy consumption. 

Although low-power circuit design forms the basis of power management in a mo-
bile device, higher-level management of power dissipation offers many more advan-
tages. These techniques allow seamless integration between user applications and 
power management policy design thus allowing energy consumption to be reduced 
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while maintaining a desired QoS. During program execution communication inter-
faces are placed in low-power states depending upon their acces patterns and applica-
tion performance needs.  

The techniques developed to date for the enhancement of heterogeneous networks 
concentrate on improving their accessibility and QoS. These methods enable mobile 
devices to communicate with each other by introducing changes in the network proto-
col stack. They also allow establishment and maintenance of connections between 
mobile hosts using available links to improve robustness and performance.  However, 
none of the techniques adequately addresses power management.  Power reduction 
methodologies presented in the past largely focus on improving energy consumption 
of one single device.   

This work presents a new methodology for managing power and performance of 
mobile devices consisting of heterogeneous WNICs.  The policy formulated decides 
what network interface to employ on a portable device for a given pattern of usage. 
The decision is governed by the current power dissipation and QoS requirements of 
the system. The maximum likelihood estimator is employed for tracking system 
changes. It detects variations in the average throughput of available wireless inter-
faces and the data usage patterns. The policy for power and performance management 
(PPM) decides what wireless network interface card to use, what low-power state to 
employ , the transition times between active and low-power states and the buffer size 
to use for good application QoS.  We implemented the policy on HP’s IPAQ portable 
device that is communicating with HP’s HotSpot server [14] via Bluetooth and 
802.11b.  The applications we tested range from MPEG video to email.  Our results 
show both large savings in power when using a single WNIC, as well as seamless 
switching with concurrent power savings among WNICs. 

2   Related Work 

Mobile devices require wireless communication interfaces to facilitate connectivity 
with Internet and with the other devices. A mechanism is required for forwarding 
packets between different wireless networks due to increasing device mobility. Mo-
bile IP [1] provides one example of such mechanism. Changes are introduced in the 
network and link layers of the network protocol stack that assist the host’s home net-
work in forwarding packets to its network of residence. However, with mobile IP 
even if communicating devices are in the same wireless network, data needs to trav-
erse a multi-hop path. In order to perform localized communication between devices, 
which are one hop distance away, Contact Networking [2] has been proposed. By 
allowing seamless switching between multiple diverse interfaces, this technique en-
hances robustness and QoS of the network.  

Mobile hosts experience varying data rates during communication in part due to 
lossy nature of the wireless link. In order to avoid disruptions, a distributed file 
system has been developed [3], [4]. It allows application aware and application 
independent adaptation to a temporary loss or degradation of the wireless link thus 
enhancing robustness. A method for improving hand-offs proposes buffering data 
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on multiple base stations in close proximity to the mobile host [5] thus achieving 
seamless switching between base stations. Telephony and data services spanning 
diverse access networks have been integrated in [6]. However, the focus of these 
techniques has been on the enhancement of performance and QoS of 
heterogeneous networks. Power management of communicating hosts has been 
mainly overlooked. 

Several techniques have been proposed to efficiently manage power dissipation 
in portable devices. These methods employ diverse mechanisms to predict periods 
of inactivity during communication. Based upon these predictions the mobile  
device is put into a low-power state. The most basic power management policy is a 
time-out. If the device remains idle for a certain period, it is put into a low power 
state. Similarly, a device can enter low-power mode when idleness is being antici-
pated in a connection [7]. However, incorrect estimates cause performance and 
power penalties. In contrast, stochastic models derive provably optimal power 
management policies. Pure Markov decision processes [8], [9] employ either dis-
crete or continuous time memory-less distributions. However, discrepancies have 
been observed in predicted and actual power savings owing to history dependent 
nature of real world processes. Time-indexed semi Markov decision processes [10] 
are based upon history based distributions. This technique has demonstrated  
energy savings in real-world applications. The power management techniques 
presented to date mostly focus on the reduction of power dissipation in one WNIC. 
This leads to inefficient power management for portables with multiple diverse 
communication interfaces.  

Methods being employed for the performance enhancement of homogeneous  
networks put a lot of emphasis on power management. IEEE 802.11 [11] standard 
implements power management by sending a traffic indication map (TIM) with the 
beacon to the client. It enables the client to enter doze mode if no more data is avail-
able. Since the device still has to wake up after every beacon interval for TIM, a new 
technique proposes decoupling of control and data channels [12]. The control channel 
uses low-power radio and wakes up the device whenever data is present. A survey of 
energy efficient network protocols for wireless is presented in [19].  Application level 
information is used for power management in [13].  In our work we developed an 
integrated policy for power and performance management.  Our power and perform-
ance management (PPM) algorithm dynamically selects the appropriate wireless net-
work interface with the goal of minimizing the overall energy consumption while 
meeting application’s QoS requirements.   We present measurement results that show 
large energy saving with good QoS while using Bluetooth and 802.11b on HP’s IPAQ 
for a typical set of applications. 

The rest of this work is organized as follows. Section 3 discusses the characteriza-
tion of Bluetooth and 802.11b interfaces. Details of the heuristic policy for choosing 
among network interfaces are presented in Section 4 whereas the results and conclu-
sion are discussed in Sections 5 and 6 respectively. 
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3   Characterization of Devices 

3.1   Bluetooth 

Bluetooth has been developed as a radio link with a short range to provide wireless 
connectivity to portable and fixed devices. It operates in 2.4GHz ISM band.  
Bluetooth supports point-to-point and point-to-multi-point connections called pi-
conets. A piconet can consist of two to eight active Bluetooth devices. One device 
is the master and the rest are its slaves. In addition, a master can support several 
other inactive slaves, which have been parked. These slaves remain synchronized 
to the master but do not become a part of the piconet. A scatternet is composed of 
multiple piconets with an overlapping coverage area. Bluetooth provides both 
synchronous and asynchronous connections.  Data rate and the average power 
consumption are a function of the packet type selected.  Bluetooth state space is 
shown in Figure 1.   
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(UNKNOWN
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Fig. 1. Bluetooth state space 

Three low-power states are supported in Bluetooth standard: park, hold and sniff. 
They can be activated once a connection exists between Bluetooth devices. Transition 
times and average power dissipation for switching between the modes are shown in 
Table 1. The CSR Bluetooth chips also supports deep sleep state with only 270uW 
power consumption [15].  Deep sleep state can be entered only if there is no activity 
on UART for at least 250ms. The main characteristics of the three low-power states 
are outlined below. 
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• Hold mode is employed to stop data transfer by the requested device for a nego-
tiated interval. It is especially useful if the requesting device wants to perform 
inquiry, page and scan or burst mode transfer operation in scatternets.   

• Sniff mode is useful on low data rate links such as email where a quick re-
sponse is required whenever data is present. During an attempt window the de-
vice looks for any incoming data. If no data is present, it goes into low-power 
mode; however, if data is present, the device listens to the master for the speci-
fied time-out period. Sniff mode can also be useful in scatternets for devices 
that are a part of two piconets.   

• Park mode is used to enhance the number of simultaneous connected slaves. As 
link set up takes about 10s in Bluetooth, it is best to retain an established 
connection. In this mode no data transfer takes place as the parked slave gives 
up its connection ID but it remains synchronized to the master.  

Table 1. Bluetooth low-power mode measurements 

 Transition time (ms) Avg. power (W) 
Active Mode 0.09 – 0.24 
Hold Mode 0.061 
Hold mode entry 1.68 0.068 
Hold mode exit 11.62 0.216 
Park Mode 0.061 
Park mode entry 2.16 0.077 
Park mode exit 4.12 0.126 
Sniff Mode 0.061 
Sniff mode entry 0.94 0.078 
Sniff mode exit 7.36 0.194 

Bluetooth supports multiple packet types for both asynchronous and synchronous 
connections. These packet types differ in data payload size and error correction 
algorithms. Maximum achievable throughput for various packet types is tabulated 
in Table 2. Our measurement results come close to throughput values reported in 
Table 2.  

Table 2. Maximum throughput for Bluetooth ACL connection 

Asymmetric max rate (kb/s) Packet 
name 

Symmetric max 
rate (kb/s) Forward Reverse 

DM1 108.8 108.8 108.8 
DM3 258.1 387.2 54.4 
DM5 477.8 477.8 36.3 
DH1 172.8 172.8 172.8 
DH3 390.4 585.6 86.4 
DH5 433.9 723.2 57.6 
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For instance, the maximum and the average throughput numbers were measured on 
CSR Bluetooth for DH5 packets at 87kB/s and 79kB/s respectively. The throughput 
increases with an increase in the payload capacity of the base-band packet. However, 
throughput can significantly decreased in the presence of noisy channels if less error-
correction bits are present. The range of Bluetooth devices is enhanced by an increase 
in transmission power; but that causes a further energy drain from the battery. 

3.2   Wireless LAN – 802.11b 

802.11b has been developed to provide fast wireless connectivity to mobile devices. 
Theoretically, 802.11b can support a maximum data rate of 11Mbps in 2.4GHz band. 
It is designed to work in adhoc as well as infrastructure network topologies. Today a 
large majority of all WLAN communication happens in infrastructure mode, thus this 
is the mode we will be focusing on in this work.  An access point acts as a bridge 
between wired and wireless networks. An association is developed between the access 
point and the 802.11b card before commencing data communication. In order to fa-
cilitate mobility, access-points also support roaming.  

WLAN has two active states, transmit and receive, in addition to two low-power 
modes, doze and off. Table 3 shows average power dissipation measurements for 
the above mentioned power states. According to the 802.11b standard, a synchroni-
zation beacon is transmitted to the awake card by a central access point (AP) every 
100ms. The beacon is followed by a traffic indication map (TIM) indicating any 
required data transfers. Doze mode is activated until the next beacon if no data 
transfer is required. This power management (PM) policy does not always give 
optimal power savings due to three main factors.  First, an increasing number of 
clients causes radios to stay on longer since there is more contention due to multiple 
simultaneous synchronization attempts by the mobiles. Second, 802.11b’s response 
time to the AP suffers due to the delays imposed by the doze mode. Finally, even 
without any running applications, 802.11b spends a considerable amount of time 
listening with an increase in broadcast traffic and is thus unable to enter doze mode. 
Doze mode can only be activated by the hardware. Transitions to the off state from 
either the active or the doze state can be controlled at the OS level. Transition times 
and average power dissipation for switching between active and low-power states 
have been tabulated in Table 3 for Cisco 350 WNIC. 

Table 3. 802.11b low-power mode measurements 

 Transition time (ms) Avg. power (W) 
Transmit state - 2.25 
Receive state - 1.4 
Doze state - 0.75 – 1.4 
Doze state entry 0.1 1.4 
Doze state exit 1 1.6 
Off state -  
Off state entry 1 1.7 
Off state exit 300 2.3 
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4   Power and Performance Management 

The goal of PPM is to enhance QoS while minimizing power dissipation in a portable 
device. PPM’s primary task is to determine what network interface is most suitable 
for the application needs and how to manage its power and performance states. When 
an application starts on a portable device, PPM pre-selects those WNICs for data 
communication whose average throughput is greater than the data consumption rate of 
the application. This ensures that the QoS requirements of the application are satis-
fied. In streaming applications a special emphasis is placed upon the data buffer size. 
It not only determines the average sleep time of the communication device but also 
the energy dissipated in the RAM. Since the size of the buffer is determined by the 
difference between the throughput and the data consumption rate, all the pre-selected 
WNIC are further examined to determine not only their communication power dissi-
pation but also the resulting RAM power consumption. The one that offers maximum 
power savings is selected.  Additionally, during the examination of the communica-
tion energy only those low-power states, which are most suitable for the current sce-
nario, are considered. PPM also defines the switching time between active and sleep 
states for the selected WNIC.  
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PPM dynamically keeps track of the variations in the application data consumption 
rate and the throughput of wireless interfaces using the log of the maximum likeli-
hood estimator as shown in equation (1).  A change in rate is defined to occur at point 
c when computed likelihood over the last w data points is greater than a preset thresh-
old. In our work we use 99.5% as a threshold. The change is observed between the 
old, old, and the new rate, new.  Details of this algorithm are further discussed in [17]. 
Whenever a change occurs, the PPM evaluates which subset of WNICs could handle 
the applications currently running by insuring that the available WNIC’s throughput 
rate, t, is greater than the application’s data consumption rate, u. 

ut λλ ≥  (2) 

Network interfaces satisfying equation (2) are further analyzed to identify the inter-
face that offers maximum power savings for the given application while keeping the 
required quality of service. The total energy, Etotal, consumed during a given session 
along with the average power dissipation, Pavg, is given by the following equations: 

switchswitchRAMcommtotal TPEEE ++=  (3) 

( )( )switchuactivetotalavg TBEP += λ  (4) 

Where Ecomm and EDRAM denote the energy consumed by the WNIC and the DRAM 
respectively during the communication period, Bactive specifies the size of the buffer 
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for streaming applications that is actively read and written to in steady state.  Pswitch 
and Tswitch indicate the average power dissipated and the time taken when switching 
from one WNIC to another.  Only WNICs with throughput high enough to meet ap-
plications demands are considered.  Figure 2 depicts the process of switching inter-
faces. The details of this procedure are further elaborated in [2] and [18].  

 

Fig. 2. Procedure for switching wireless network interfaces 

 

Fig. 3. Buffer layout and the associated time intervals 

In streaming applications the size of the buffer directly affects Ecomm and EDRAM. If 
the size of the buffer undergoes an increase, the average power dissipation of the 
communication device diminishes due to longer sleep periods and thus less overhead 
in transition between power states. On the other hand, the RAM energy increases with 
increasing buffer sizes as the number of active banks increases. Thus the determina-
tion of the buffer size is of principal importance for enhancing power savings. The 
size of the buffer is chosen in a way such that the transmissions could be scheduled in 
bursts. In between bursts the WNIC can transition into low power mode, thus saving 
energy and freeing bandwidth from contention. The size of the buffer is determined 
according to the equations given below. 

cushswitchactive BBBB ++=  (5) 

transofftransonsleepactive BBBB −− ++=  (6) 

( ) ( )ututsleepsleep TB λλλλ −=  
(7) 
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( ) ( )ututtransofftransoff TB λλλλ −= −−  (8) 

( ) ( )ututtransontranson TB λλλλ −= −−  (9) 

uswitchswitch TB λ=  (10) 

( ) ( )( )δλχλ +−−= 11 utcushcush TB  (11) 

( ) ( ) maxBBT ututbe ≤≤−λλλλ  (12) 

Where: 

• Tsleep is the average sleep interval of the communication device. 
• Tswitch accounts for the worst case delay encountered in dynamically 

switching between two network interfaces. 
• Tcush provides a cushion for any small variations present in the system. 
•  and  denote small variations in throughput and data consumption rate re-

spectively. 
• Toff-trans and Ton-trans are the transition times between active and low-power 

and low-power and active states respectively.  
• Tbe is the break-even time and is defined in terms of power consumed dur-

ing the transition, Ptrans = Pon-trans + Poff-trans, the power consumed in the ac-
tive and sleep states, Pactive and Psleep.   

• Bmax is the maximum amount of memory available. 

When an application starts, it waits for Tinitial-delay before beginning to read from the 
buffer. This time interval is influenced by the maximum delay a user can tolerate at  
 
start-up. Thus the time to enter steady state, Tsteadystate, is given by equation 14.  Dur-
ing this interval the communication device stays in the active mode. 

( ) ( )uttdelayinitialdelayinitialesteadystat TBTT λλλ −−+= −−  (13) 

The total energy consumed by the communication device, Ecomm, during the buffer 
refill period is given by equation (15).  Note that for simplicity the transition power 
and time have been combined into one variable, Ptrans and Ttrans.  The communication 
energy needs to be balanced by the energy consumed by memory, as larger buffer 
sizes cause higher energy consumption. 

sleepactive

activetrans
transtransbe PP

PP
TTT

−
−

+=  (12) 
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( ) sleepsleeptranstranscushionactiveactivecomm TPTPTTPE +++=  (14) 

The amount of energy consumed by memory, ERAM, is determined from the energy 
consumed by the banks that are actively participating in reading and writing of data, 
Eactive, and the energy of non-active banks, Enon-active: 

activenonactiveRAM EEE −+=  (15) 

( )( )uactiverefreshabanksreadactivewriteactive BPNPTPE λ++=  (16) 

( ) activenonabanksbanksactivenon PNNE −− −=  (17) 

bankabanks SizeBN =  (18) 

Where: 

• Pwrite and Pread specify the average power dissipated when the RAM is writ-
ten and read respectively.  

• Nbanks specifies the total number of available memory banks.  
• Pnon-active is the average power consumed by the memory banks that are 

non-active.  
• Prefresh is the average power spent in refreshing the active banks not partici-

pating in read and write operations. 
• Nabanks is the number of memory banks where each has size Sizebank 

Figure 4 shows the decrease in communication energy as the buffer size increases 
whereas the increase in RAM energy with an increase in the buffer size is shown in 
Figure 5. 

 

Fig. 4 and 5. Communication (left – Fig. 4) and DRAM power consumption (right – Fig 5.) in 
terms of buffer size 

PPM pre-selects WNICs for a particular application based upon their average 
throughputs and the data consumption rate of the application. The WNIC that offers  
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minimum power dissipation with regards to communication and RAM is selected. 
The appropriate low-power state of the WNIC along with the switching points is also 
defined by PPM. Additionally, it can dynamically switch the selected WNIC if a 
change in its throughput and/or the average data consumption rate of the application is 
detected.  In the next section we present the results obtained by using our PPM with a 
typical set of applications having diverse data usage patterns.  

5   Results 

Our measurements were performed with a research prototype of HP’s HotSpot server 
[14] and IPAQ 3970 client that supports both 802.11b (CISCO Aironet 350 PCMCIA 
WLAN) and Bluetooth (CSR) interfaces.  The operating system running on the IPAQ is 
Linux. The power measurements have been performed with a DAQ card at 
10ksamples/sec. In our experiments, we have used transmission control protocol (TCP) 
for all data communication. For Bluetooth this has been done using bnep.  At first we 
consider individual applications and employ our PPM to determine the appropriate 
WNIC for each one based upon its data consumption rate and the average throughput 
supported by the WNIC. For this experiment we have assumed that the throughput and 
the data usage pattern do not change significantly during program execution.  

 
Fig. 6. Application data consumption rate (kB/s) 

For MP3 audio streaming Bluetooth and 802.11b offer similar performance, but 
802.11b gives more power savings as shown in Figure 7. Note that Bluetooth cannot 
be turned off as the reestablishment of the connection requires 1-10 sec. In contrast, 
as shown in Figure 8, Bluetooth is more suitable for email traffic as it offers larger 
power savings in park mode with deep sleep enabled. 802.11b incurs a significant 
power dissipation penalty when frequently switching from off to active state.  

Bluetooth seems to be the connection of choice for telnet and WWW based appli-
cations owing to its faster response time and low-power dissipation as compared to 
802.11b. Again the suitable low-power state for Bluetooth is Park with deep sleep 
enabled. However, due to a significant decrease in the response time for 802.11b with  
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off mode, the low-power state of choice for 802.11b is PM. The switching overhead 
associated with the results is shown in Figures 9 and 10. 

 

Fig. 7 and 8. WNIC power consumption for MP3 audio (left – Fig.7.) and email (right – Fig. 8.) 

 

Fig. 9 and 10. WNIC power consumption for Telnet (left – Fig. 9.) and WWW (right – Fig. 10.) 

For MPEG2 video streaming, Bluetooth can only be employed for small images 
due to its lower average throughput. The low-power mode for Bluetooth is again park 
with deep sleep enabled. However, 802.11b with off mode offers more power savings 
due to higher throughput and non-existent power dissipation in the off state. The re-
sults are shown in Figure 11.  Power dissipated by the communication device is an 
increasing function of the buffer size in streaming applications. However, by using 
PPM in our particular setup, we found that the buffer size is limited by the power 
dissipated in the DRAM.  

Table 4 shows the percentage of time spent in low-power state for the most op-
timal power and performance management policy per application.  Note that the 
energy savings for these policies have been persented in Fig. 7-11 above.   
Clearly, for each application 802.11b spends more time in low-power mode since 
its bandwidth is significantly higher than Bluetooth’s.  In our particular case MP3 
files we tested with were the highest quality audio, and thus were larger relative 
to MPEG2 video file.  In fact, video had to be of small size (160x120) due to low 
bandwidth of Bluetooth.  As a result, both interfaces spend more time in low-
power state with video than audio. 
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Fig. 11. WNIC power consumption for MPEG video (160x120) 

Table 4. Time spent in low-power mode per application type and WNIC 

Applications Bluetooth (%) sleep time 802.11b (%) sleep time 
MP3 audio 69.4 96.9 
MPEG2 video 76.2 97.6 
WWW 92.9 99.3 
Telnet 99.3 99.9 

Next we present results of the experiment that includes a dynamic switch between 
wireless interfaces during program execution. In this experiment the data consump-
tion rate of the application stays constant, but the throughput of the selected WNIC 
undergoes a change. Let’s suppose that a person with a portable device is streaming 
MP3 audio using Bluetooth. After a certain period of time he moves away from the 
server and the throughput of Bluetooth experiences a sharp decrease. The estimator 
detects the change in throughput and forces PPM to reevaluate the suitability of the 
selected network interface.  The reevaluation suggests a change in the network inter-
face and 802.11b is chosen over Bluetooth. The comparison of power dissipation is 
shown in Figure 12. In the comparisan we show that our policy would show signifi-
cant power savings over just using Bluetooth. 

 

Fig. 12. Throughput change forces a WNIC switch with PPM  
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Lastly, we analyze the performance of PPM when application data consumption 
rate changes.  We created an application trace consisting of MP3 audio, email, telnet, 
WWW and MPEG2 video.  The trace is executed first by using 802.11b only with PM 
enabled, secondly by employing Bluetooth only with park as the low-power mode and 
in the end by PPM with Bluetooth and 802.11b as the available wireless interfaces.  
When the application trace is executed using 802.11b only, the wireless interface is 
placed in the doze mode whenever TIM indicates periods of inactivity. Similarly for 
Bluetooth, the interface is placed in the park mode whenever no data communication 
is needed. The results are shown in Figure 13. We found that PPM offers a factor of 
2.9 times improvement in power savings over just employing Bluetooth with park 
mode, and a factor of 3.2 times higher than 802.11b with PM the power savings en-
abled. Moreover, PPM enhances the QoS since wireless interfaces are switched to 
match the data usage pattern of the application.  

 

Fig. 13. Change in data consumption rate forces a WNIC switch when using PPM 

6   Conclusion 

This work presents a new methodology for enhancing QoS while maximizing power 
savings in heterogeneous wireless systems. A policy for selecting the most appropri-
ate network interface for a particular application has been developed. We have tested 
our policy on IPAQ 3970 supporting 802.11b and Bluetooth wireless interfaces using 
various typical applications. We have shown that our PPM offers 2.9 and 3.2 power 
savings over solely using Bluetooth and 802.11b respectively when running a string 
of applications including MPEG video and MP3 audio. 
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Abstract. Instruction reuse and memoization exploit the fact that during a pro-
gram run there are operations that execute more than once with the same operand
values. By saving previous occurrences of instructions (operands and result) in
dedicated, on-chip lookup tables, it is possible to avoid re-execution of these in-
structions. This has been shown to be efficient in a naive model that assumes
single-cycle table lookup. We now extend the analysis to consider the energy,
area, and timing overheads of maintaining such tables.

We show that reuse opportunities abound in the SPEC CPU2000 benchmark
suite, and that by judiciously selecting table configurations it is possible to exploit
these opportunities with a minimal penalty. Energy consumption can be further
reduced by employing confidence counters, which enable instructions that have a
history of failed memoizations to be filtered out. We conclude by identifying those
instructions that profit most from memoization, and the conditions under which it
is beneficial.

Keywords: Memoization, Reuse, Energy, Area, Lookup.

1 Introduction

During program execution there are operations that execute, more than once, with the
same operand values. Several papers published in the late 90s proposed exploiting this
fact by saving previous occurrences of instruction level operations (operands and result)
in dedicated, on-chip, lookup tables. It is then possible to avoid execution of these
instructions by matching the current executing instruction’s operands with an entry in
the table.

The approach of Sohi and Sodani [7] is to reuse instructions (identifiable by the
Program Counter) early in the pipeline by matching their operands or by establishing
that their source registers haven’t been overwritten since the instruction’s last invocation.
Their technique is called Instruction Reuse. Citron, Feitelson, and Rudolph [8] extend
the idea of Richardson [9] and perform the reuse test on the operand values and operation,
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Table 1. Latencies and throughputs of instructions on current and previous generations of micro-
processors

Processor Clock IALU IMUL IDIV FADD FMUL FDIV
Rate lt tp lt tp lt tp lt tp lt tp lt tp

POWER3-II [1] 450MHz 1 1 5 1 37 37 3 1 3 1 18 18
POWER4 [2] 1.5GHz 1 1 7 6 68 67 6 1 6 1 30 30

Pentium III [3] 1.4GHz 1 1 4 1 56 56 3 1 5 2 38 38
Pentium 4 [4] 3.2GHz .5 .5 15 5 56 23 5 1 7 2 38 38

UltraSPARC II [5] 480MHz 1 1 5 5 36 36 3 1 3 1 22 22
UltraSPARC III [6] 1.2GHz 1 1 6 5 39 38 4 1 4 1 20 17

in parallel to instruction execution. This enables different static instruction instances to
reuse each other’s results. This was coined Instruction Memoization. Molina, González,
and Tubella [10] combine both approaches: a match is first attempted when indexed by the
PC and if that fails the operand values are used as an index.A limited study (multiplication
in four applications) by Azam, Franzon, and Liu [11] suggests memoization as a power
saving method.

However, these models are naive and outdated. They assume that the latency of the
table lookup time is a single cycle, that it can be performed in parallel or ahead of com-
putation without any timing or power penalty, and that a successful lookup will enhance
performance. These and other shortcomings have been reviewed by Citron and Feitelson
[12]. Table 1 shows that the latencies of most instructions on the current generation of
microprocessors are growing in comparison to their predecessors. Instruction Memo-
ization, or IM (this is the term we will use throughout this study), has the potential to
reduce these latencies and enhance performance given a model that is adapted to the deep
pipelines, short cycles, and tight energy budgets of present and future microprocessors.
The contributions of this study are fourfold:

1. Ratify that reuse opportunities still exist in CPU intensive applications. Sect. 2
presents the reuse rates for the SPEC CPU2000 suite compiled for IBM’s POWER4
[13] 64-bit architecture.

2. Explore the organization of the lookup tables in terms of reuse rate, access time,
energy consumption, and area. Sect. 3 performs this analysis with2k and full factorial
designs.

3. Enhance the reuse process. Sect. 4 will show how using multiple lookup tables (per
instruction class), trivial computation detection, and confidence estimators can raise
the reuse rate and reduce the miss penalty.

4. Determine which instructions benefit most from IM. Sect. 5 compares the physical
features of various functional units to lookup tables that store their results.

This study is just a first step in exploring the power/performance potential of using
IM in a modern processor. The final, cycle accurate, performance evaluation has been
reserved for future work. We believe that including it in this work would dominate the
analyses presented and detract from their impact.
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Table 2. Benchmarks (CINT2000 top half, CFP2000 bottom half), input sets, and instructions
executed. The default inputs are the lgred sets of MinneSPEC. Benchmarks were terminated after
2 billion instructions

Benchmark Input # inst. Benchmark Input # inst.
164.gzip lgred - log 434M 168.wupwise lgred 2000M
175.vpr lgred - place 2000M 171.swim lgred 304M
176.gcc lgred 2000M 172.mgrid lgred 94M
181.mcf lgred 836M 173.applu lgred 66M
186.crafty lgred 838M 177.mesa lgred 850M
197.parser lgred 2000M 178.galgel lgred 210M
252.eon lgred - cook 761M 179.art lgred 2000M
253.perlbmk lgred 1921M 183.equake lgred 871M
254.gap lgred 772M 187.facerec lgred 356M
255.vortex lgred 1278M 188.ammp lgred 1207M
256.bzip2 lgred - source 1759M 189.lucas lgred 212M
300.twolf lgred 925M 191.fma3d lgred 540M

200.sixtrack lgred 1329M
301.apsi lgred 257M

2 Instruction Memoization and Reuse Potential

This section will reconfirm the potential of IM by measuring the reuse rate of an infinitely
large lookup table. A lookup table, which we will coin a Memo-Table, is a cache like
structure that is composed of a relatively large tag (opcode + operands) portion and a
relatively small data portion (result). Fig. 1 shows a Memo-Table designed to contain
the opcodes, operands, and results of IBM’s POWER4 [13] 64-bit instructions. The
extensive use of FMADD (Floating point Multiply ADD) instructions necessitates the
storage of three 64-bit operands in the table. The opcode field is composed of 6 bits of
the basic opcode (OPC) and 10 bits of the extended opcode (XO). All bits that aren’t
used are zeroed when an instruction is placed in the table. There is no need for a valid bit,
an illegal opcode loaded at boot-time will prevent matching and reading invalid data.
The daunting problem of matching 207 bits is one aspect that has been neglected by
previous studies that focused on two 32-bit operands. Widespread 64-bit computing and

OPC XO Operand1 Operand2 Operand3 Result
0
1
2
3

n-1

5 + 10 + 64*3 = 207-bit Tag 64-bit Data   

Fig. 1. A generic Memo-Table capable of memoizing all POWER4 instructions
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enhanced instruction sets forces us to deal with this problem head-on. Sect. 3 examines
the impact this has on performance, power, area and access time.

2.1 Simulation Methodology

The infrastructure for all our simulations is Aria [14], an environment for PowerPC
microarchitecture exploration. The environment dynamically traces all user and library
code (system calls are executed but not traced). Drivers can be written that collect and
analyze any subset of instruction types, data values, memory references etc. Specifically,
we built drivers to collect memoization statistics for various instruction types. The data
was collected from the SPEC CPU2000 suite using the MinneSPEC [15] input sets.
Table 2 shows the exact inputs used and the number of instructions simulated. The
C/C++ benchmarks were compiled on a POWER4 running AIX version 5.1 using the
IBM compiler xlc v6.0 with the flags: -q64 -DSPEC CPU2000 LP64 -O5. The
Fortran benchmarks were compiled using the xlf v8.1 compiler with the flags: -q64
-O5.

2.2 Instruction Memoization Potential

In order to gauge the potential of instruction memoization we performed an experiment
that measures the reuse rate of most instructions using an “infinite” Memo-Table (1
million entries with 64-way associativity, LRU replacement, and indexed using the XOR
of the lower bits of the operands and opcodes). However two classes of instructions are
omitted:

– Branches: Conditional branches in the POWER architecture determine their out-
come on precomputed bits in condition registers. Memoizing the instruction to obtain
the next PC based on the current PC and condition bits is exactly what the Branch
Prediction Unit does, there is no need to duplicate this functionality.

– Loads/Stores: Memoization of memory references based on the base address and
offset requires storing the effective address and implementing an invalidation mecha-
nism every time data is stored to memory. This reduces the technique to just another
level in the memory hierarchy. Nevertheless, the effective address calculation is
memoized.

Fig. 2 shows the percent of dynamic instructions looked up (out of all executed
instructions, including branches) and the fraction of successful lookups for all 26 ap-
plications in the SPEC CPU2000 benchmark. Nearly 75% of all dynamic instructions
can be successfully memoized for the CINT2000 suite and 65% for the CFP2000 suite.
The weighted harmonic mean is used for all averages in this study. It was chosen for
its mathematical properties that are best suited for rates. A study by Yi and Lilja [16]
using 7 CPU2000 benchmarks and different metrics concludes that the benchmarks have
significant amounts of redundant computations. Our study ratifies these conclusions on
the whole suite.
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Fig. 2. Percent of all memoizable and successfully memoizable instructions when using a very
large Memo-Table

3 Memo-Table Structural Factors

The factors that influence the reuse rate, access time, energy consumption, and area
are numerous: size, associativity, indexing, number of ports, etc. A full factorial design
would entail hundreds of simulations. In order to reduce this to a manageable size we
will first perform a 2k factorial design using four factors (Sect. 3.1) and then perform a
full two-factor design (Sect. 3.2) on the influential factors.

3.1 2k Factorial Design

A 2k Factorial Design [17] is used to determine the effect of k factors, each of which
has two levels. When a factor has a continuity of levels two extremes are chosen. The
technique computes the allocation of variation contributed to each factor separately and
in combination with others. The factors and levels we chose are described in Table 3.
The metrics measured are:

1. Reuse rates for the CINT and CFP benchmarks measured by dividing the number of
successful memoizations by the number of memoizable instructions executed (and
then taking the weighted harmonic mean).
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Table 3. Memo-Table factors and levels used in the 2k factorial design

Factor Low Level High Level
size 32 entries 1024 entries
associativity direct-map 8-way
indexing mode PC operands + opcode
replacement mode random Least Recently Used

2. Energy of an access (nJ).
3. Access time (ns).
4. Total area (mm2).

One anomaly that arises is the use of the replacement method as a factor in conjunction
with a direct mapped table. We chose to keep this level of associativity due to its influence
on the access time and energy results.Access time and energy are calculated using CACTI
3.0 [18] modified to accommodate the large tag size1 and to distinguish between different
indexing and replacement modes. One read port, one write port and a technology of 90nm
(forecast for next generation technology) are configured. The allocation of variation is
summed in Table 4 and the raw results are in Table 5. From both we can conclude:

Fig. 3. Reuse rate, access time, energy, and table area as a function of a Memo-Table’s size and
associativity

1. The size of the Memo-Table is the dominant factor for the reuse rate metric, primary
for energy, but is only secondary to associativity for access time and area. Further
exploration is needed to determine the optimal table size and associativity.

1 Two 64-bit operands were simulated, three operand tables are discussed in Sect. 4.1.
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Table 4. Allocation of variation of the 2k factorial design (Size, Associativity, Mapping, Replace-
ment, Correlations between factors)

Metric Allocation of Variation (%)
S A M R C

Reuse Rate (CINT) 87 2 9 0 1
Reuse Rate (CFP) 95 2 2 0 1
Energy 9 90 0 0 1
Access Time 56 41 2 0 1
Area 64 36 0 0 0

Table 5. Configurations and results of 2k factorial design. S- size, A - associativity, M- mapping,
R - replacement method

Configuration Results Configuration Results
S A M R cint cfp nJ ns mm2 S A M R cint cfp nJ ns mm2

32 1 pc rnd 5.1 7.2 0.34 0.65 0.14 1K 1 pc rnd 36.6 37.0 0.47 1.00 0.97
32 1 pc lru 5.1 7.2 0.34 0.65 0.14 1K 1 pc lru 36.6 37.0 0.47 1.00 0.98
32 1 ops rnd 13.9 11.4 0.35 0.69 0.14 1K 1 ops rnd 55.8 43.5 0.51 1.04 0.97
32 1 ops lru 13.9 11.4 0.35 0.69 0.14 1K 1 ops lru 55.8 43.5 0.51 1.04 0.98
32 8 pc rnd 8.4 9.4 0.57 1.06 1.24 1K 8 pc rnd 47.0 45.0 0.98 1.36 2.04
32 8 pc lru 8.9 9.8 0.57 1.10 1.25 1K 8 pc lru 49.0 47.0 1.01 1.36 2.05
32 8 ops rnd 15.1 13.9 0.58 1.06 1.25 1K 8 ops rnd 64.4 50.4 1.02 1.40 2.04
32 8 ops lru 15.4 14.4 0.58 1.06 1.26 1K 8 ops lru 66.4 52.0 1.04 1.40 2.05

2. The replacement method has hardly any effect on any of the metrics.
3. Using the program counter as the index yields poor reuse rates yet hardly effects

time, energy, or area. The reduced reuse rate is a result of: (i) all dynamic instances
of an instruction are mapped to the same set, reuse is limited to the size of the set;
(ii) dynamic instructions of different static instructions (with the same opcode) can’t
use each others results. Less than half the successful lookups can be attributed to
the same static instruction.

4. When assuming a clock rate of 2GHz (minimum estimate for future IBM POWER
implementations) even the fastest configurations take more than one cycle to com-
plete a lookup. This must be: a) minimized. b) compared against the latency of
memoized instructions.

After fixing the mapping (operands) and replacement (random) modes, the next step
in our study is to perform a full two-factor factorial design using size and associativity.

3.2 Full Two-Factor Factorial Design

In this set of experiments we vary the size of the Memo-Table from 32 to 1024 entries
and the degree of associativity from direct-mapped to 16-way and 64-way (which rep-
resents fully associative in our model). Indexing is performed using the operands and
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Fig. 4. Reuse rates (CINT), access time, energy, and table area of different memoization and reuse
schemes

opcodes and random replacement is implemented. Fig. 3 shows the reuse rates2, energy,
access time, and area (Z-axis) as a function of size (Y-axis) and associativity (X-axis).
A surprising result is that small fully-associative tables are faster and consume less en-
ergy than corresponding (same number of entries) set-associative tables. This is due to
the CAM (Contents Addressable Memory) based design of a fully-associative cache in
the CACTI model. For small Memo-Tables the overhead of tag decode, routing, and
comparison out-weighs the added delay and energy of the large CAM cells (but not the
area occupied). However, the almost negligible effect that associativity has on the reuse
rate indicates that a direct-mapped Memo-Table is a much better choice.

Assuming a clock rate of 2GHz it would be wise to choose a configuration that
minimizes the number of cycles it takes to access the Memo-Table. A 512-entry, direct-
mapped Memo-Table has an access time of just under 2-cycles (0.94 ns), a reuse rate
of 47.7% (37.9% for CFP), an energy consumption of 0.41 nJoules, and a total area of
0.40 mm2. In Sect. 4 we will show several techniques to reduce the Memo-Table’s size
yet retain its reuse rate.

3.3 Instruction Reuse

The large overhead attributed to the tag comparison, the fact that a fully-associative
Memo-Table is feasible, and the latency of a Memo-Table lookup, leads us to re-

2 Just the CINT suite, the CFP suite displays similar behavior.
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examine the Instruction Reuse (IR) scheme of Sohi and Sodani (see [7] for full details).
IR has three versions:

Sv The PC is used to index the Reuse Buffer (RB), the operand values are used to verify
reuse. This is similar to the configurations in Sect. 3.1 where mapping is performed
by the PC. The difference is that the PC must match and the opcodes are omitted.

Sn An entry is mapped by the PC and stores only the operand’s register names, which
reduces the tag size. Every time a register is overwritten the corresponding entries
are invalidated. Reuse is verified by a PC match and valid bit. However, the scheme
implies a CAM based design necessary for the invalidations.

Sn+d In order to overcome frequent invalidations, consuming instructions are linked
to their producers. An entry is valid if its producer is in the table and is the last
producer of the register value (an auxiliary table maps each architected register to
the RB entry which has its latest result). Thus, a lookup can be composed of a RB
read and two accesses to the auxiliary table.

Two possible optimizations are using time stamps to test if an operand register was
overwritten (this simplifies the RB structure), and not invalidating a register that has
been overwritten with its current value (reduces the invalidation rate). Table 6 lists
all configurations compared and Fig. 4 displays the results using 1024-entry, 4-way
tables and 128-entry, direct-mapped tables.Although the Snts scheme has better physical
metrics than IM, and even assuming the reuse rate of the Snsv scheme, the diminished
reuse rate makes it unattractive for future microprocessor enhancements.

Table 6. Instruction Reuse Configurations

Name Configuration
IM Memo-Table described in Sect. 3.2
Sv Sv scheme described in [7] (similar to Memo-Table mapped by PC)
Sn Sn scheme of [7], built with CAM cells
Snts Sn scheme using time stamps
Snsv Sn scheme, same value doesn’t invalidate
Sn+d Sn+d scheme of [7] (incorporates Snts and Snsv techniques)

4 Improving the Reuse Rate

The results obtained in the previous section, 47.7% (CINT) and 37.9% (CFP), are mod-
erate at best. In this section we will suggest several techniques for enhancing the reuse
rate and examine their influence on time, energy, and area.

4.1 Multi Memo-Tables

In the previous experiments all memoized instructions have been “lumped” together into
one table. This is unnecessary and even contradictory to the design of the processor’s
datapath where instructions are dispatched to different queues and/or reservation stations
prior to execution. Using this logic we split the Memo-Table into 3 distinct tables: Integer
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Fig. 5. Reuse rates when the global Memo-Table is split into Integer, Float, and EA calculation
tables. Memo-Table sizes are 512 and 128 entries (direct-mapped)
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Fig. 6. Reuse rates when the global Memo-Table is split into 8 distinct tables. Memo-Table sizes
are 512 and 128 entries (direct-mapped). Only CFP results are shown

operations, FP operations, and Effective Address (EA) calculation. In order to further
enhance reuse chances we mapped the FP Memo-Table using a mix of bits from the
exponent and mantissa.

The reuse rates for three 512-entry tables and three 128-entry tables are shown in
Fig. 5. In addition, the combined reuse rate is shown (number of total successes divided
by number of total accesses). From a performance perspective it is clearly beneficial to
split the global Memo-Table. The combined, Integer, and EA reuse rates all improve.
However, the size of the Memo-Tables is now trebled. The reuse rate of three smaller
Memo-Tables used to approximate one larger Memo-Table falls slightly lower than
the monolithic approach. Nevertheless, the size of the three 512 Memo-Tables is less
than half the size of a 32KB on-chip cache, no extra energy is being expended, and the
same number of access is being made. This technique can be further fostered by splitting
the Integer Memo-Table into short and long latency instructions (IMUL and IDIV) and
by splitting the FP Memo-Table into FADD/FSUB, FMUL, FDIV/FSQRT, FMADD,
and all other FP instructions. The rationale is to cluster operations with similar latencies
into the same Memo-Table.
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Fig. 6 shows the reuse rates for this 8-way split (the majority of the Memo-Tables
store FP calculations so only the CFP results are shown). The results are mixed, the
combined reuse rate is the same as for one 512-entry global Memo-Table, and it sur-
passes three 128-entry Memo-Tables (Fig. 5). However, this is achieved with twice the
area. Reasons to implement such a configuration would be for chip locality: moving the
Memo-Table closer to the Functional Unit (FU) it serves can reduce wire delay. This
also enables building Memo-Tables with different characteristics: A SQRT table needs
only one operand while a FMADD table needs three.

4.2 Trivial Operations

Trivial operation detection has been used in the past as a memoization filter. Both
Richardson [9] and Citron et al. [8] have used it in their works. Operations are defined
as trivial when they can be matched against constant values (0,1,-1) and their results are
straightforward from the operands (a + 0 = a, a × 1 = a, a/1 = a, ...). The premise
is that instead of storing these operations they will be detected by dedicated circuitry
before or in parallel to a Memo-Table lookup. In fact, the trivial operation detection
can be viewed as an extra degree of associativity.
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Fig. 7. Comparison of reuse rates of 512-entry Memo-Tables to 128-entry Memo-Tables with
trivial operation detection
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Fig. 7 shows the reuse rate of the three major Memo-Tables (Integer, Float, EA)
with and without trivial operation detection (in this case a trivial operation detection is
considered a successful lookup). At a first glance the results are impressive: for both
suites all Memo-Tables display an enhanced reuse rate. Moreover, a second, closer,
look at the column labels shows that we are comparing 512-entry Memo-Tables to
128-entry Memo-Tables. By using trivial operation detection we have quartered the
size of the Memo-Tables, and improved the reuse rate. Fig. 8 compares the raw number
of accesses to Memo-Tables in both cases (average number of access per benchmark).
When using the smaller tables the number of misses is larger: only non-trivial operations
are memoized, but there are less accesses which saves energy (in addition to the smaller
table sizes).

Nevertheless, trivial operation detection isn’t free. Our calculations show that a 0,1,-1
detector for two 64-bit operands has an energy consumption of 0.00051nJ and an area
of 0.0023mm2. These are inconsequential when compared to the 0.35nJ and 0.24mm2

of a direct-mapped, 128-entry Memo-Table. However, it has an access time of 0.21ns.
Accessing it in parallel to the Memo-Table hides this latency yet burns energy. A se-
quential lookup (first trivial operation then Memo-Table) results in an access time of
0.96ns (0.21 + 0.75) which is comparable to a 512-entry, direct-mapped Memo-Table
(0.94ns) and is just under two clock cycles for a 2GHz clock. Yi and Lilja [19] suggest
detecting trivial operations earlier in the pipeline by testing the first operand to arrive,
this can solve the delay problem and should be considered in a detailed pipeline model.
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Fig. 9. Comparison of the number of successfully memoized instructions of 128-entry Memo-
Tables, with and without confidence filtering. Trivial operations aren’t counted

4.3 Confidence Counters

Although trivial operation detection reduces the number of Memo-Table accesses the
number of misses is still high. Some benchmarks just aren’t amenable to memoization
(171.swim and 171.mgrid for instance). A well known technique for filtering these
wasteful Memo-Table accesses is the use of confidence counters. They are usually used
for branch [20] and value prediction [21].

In our model every instruction fetched is mapped to a Confidence Table (CT) which
contains a n-bit saturating counter per entry. When a dynamic instruction instance hits
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the counter is decreased, when it misses it is increased. After n misses a static instruction
is marked as non-memoizable (although it can still be tested for triviality) and this data
is passed on with it to the Memo-Tables. After a predetermined number of cycles the
CT is flushed in order to give “mis-memoizing” instructions a second chance.

Fig. 9 displays the numbers of Memo-Table hits and misses when a 5-bit saturating
confidence counter is used per entry (trivial ops aren’t counted so we can directly compare
Memo-Table misses). The CT contains 1024 entries and is flushed every 131072 cycles
and the Memo-Tables are direct-mapped with 128 entries and trivial op detection. The
results are impressive, the CT manages to filter out many unsuccessful instructions while
raising the number the memoized instructions. The “price” is a table that has an energy
consumption of 0.011nJ, an area of 0.087mm2, and an access time of 0.24ns. The energy
savings are huge, every aborted lookup saves 0.35 − 0.011 = 0.339nJ and the CT can
be accessed way before memoization, hiding the CT’s latency. The only complexity is
linking the results of the Memo-Table lookups to the CT, this has to be explored in a
detailed datapath design. The CT can be reduced even further to 256 entries and 4 bits
per counter, and still retain a better reuse rate than not using confidence counters. This
shaves off several picoseconds from the access time (0.24ns − 0.21ns = 30ps).

Table 7. Characteristics of 64-bit functional units and their adjacent Memo-Tables

Functional Unit Features CFP Rates
Unit latency energy area confidence reuse trivial
IADD 1 0.16 0.09 28.4 21.4 29.6
IMUL 7 1.97 0.20 4.4 3.8 9.2
IDIV 68 3.63 0.20 19.7 14.8 75.7
FADD 6 0.69 0.48 21.5 14.2 33.4
FMUL 6 1.17 0.52 14.4 6.4 32.9
FMADD 6 1.37 0.72 17.7 6.9 19.4
FDIV 30 5.51 0.48 12.9 8.5 38.8
Memo-Table 2 0.35 0.24 128-entry, 1-way; update energy: 0.17nJ
TO detector 1 0.00051 0.0023 detects 0,1,-1 patterns
CT 0 0.011 0.087 1024-entry, 5-bit saturating counter

5 “Look It Up” or “Do the Math”?

Finally after exploring the range of Memo-Table attributes we must compare the memo-
ization paradigm to the basic computations themselves. Table 7 lists the characteristics of
several 64-bit functional units and the reuse3 (rr), trivial operation (tr), and confidence
(cr) rates (instructions that haven’t failed memoization) of the 128-entry Memo-Tables
servicing them. The energy data was obtained from the PowerTimer [22] tool which
models a 64-bit processor 4. It is assumed that the Memo-Table lookup is performed
in parallel to computation and squashes it upon success. All instructions access the CT

3 The number of successful memoizations divided by the total number of instructions executed.
4 This isn’t official IBM data and shouldn’t be pertained as such.
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and memoized instructions update it as well. To measure the usefulness of memoization
we defined two equations not unlike the Average Memory Access Time (AMAT).

ACT Average Computation Time The average time (in cycles) to compute an operation:
ACT = rrMTt + trTOt + [1 − (rr + tr)]FUt

ACE Average Computation Energy The average energy (nJoules) expended when com-
puting an operation. This is slightly more complex and takes into consideration
the Memo-Table lookup (MTlk.e: computed for all non-trivial operations that
passed the confidence test), update energies (MTup.e: computed for all Memo-
Table misses), and the energy of the FU until the operation is squashed (FUsq.e:
computed for all Memo-Table hits). The TO detector and CT are accessed by all
instructions, the CT is updated by all memoizable instructions:
ACE = TOe + (1 + cr)CTe + crMTlk.e + rrFUsq.e + (cr − rr)MTup.e + [1 −
(tr + rr)]FUe

Fig. 10 shows the ACT and ACE of the afore listed units compared to the latencies and
energies without memoization (the CFP2000 suite is used). The ACT and ACE both
show that it is counterproductive to memoize integer addition instructions, it incurs
both performance and energy penalties. All other units display performance and energy
gains. The gains are proportional to the units latency, the longer the latency the higher
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the performance potential. The problem is that long latency instructions usually have a
low frequency of execution. This must be overcome in future work.

6 Observations and Conclusions

Several key observations have been noticed during this study and will define the basis
for future instruction memoization exploration:

– Reuse opportunities are rampant in SPEC CPU2000. 65-75% of all dynamic in-
structions have been executed with the same operands previously.

– Mapping the Memo-Tables using the operand values utilizes the full table and
enables dynamic instruction instances of different static instructions to use each
others results.

– The associativity of a Memo-Table profoundly affects its access time, energy, and
size yet hardly enhances its reuse rate. Direct-mapped is the way to go.

– Directing instructions to several Memo-Tables based on instruction classes is more
cost effective than a single monolithic table.

– Trivial operation detection can quarter a Memo-Table’s size while increasing its
reuse rate.

– Confidence counters filter out many un-memoizable instructions without reducing
the number of successful Memo-Table lookups.

– A comparison between direct computation to computation + memoization shows
that it is useless to memoize single-cycle instructions.

– Memoization of long latency instructions shows a potential for performance im-
provement, and due to the use of confidence counters memoization results in energy
savings for most units.

This study is the first step in proving that instruction memoization is a viable per-
formance improving technique for modern microprocessors. We have shown that it is
possible to obtain high reuse rates combined with low energy penalties and area over-
head. Nonetheless, there is still plenty of work ahead: in light of our observations we
must now integrate IM into a detailed pipeline model. The stages in which to perform
confidence and trivial operation tests must be chosen, operands must be supplied to
the Memo-Tables as early as possible, and the effects of compiler scheduling must be
examined. In addition integration of dependent instructions into one memoization unit
should be further explored (similar to the Sn+d scheme and the Dynamic Computation
Reuse scheme of Connors and Hwu [23]).

The bottom line: Fast clock rates are increasing the latency of many complex instruc-
tions. Instruction Memoization can reduce these latencies and reduce energy consump-
tion to boot.
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Abstract. Power and cooling considerations have moved to the fore-
front of modern system design. The restrictions placed upon systems by
power and cooling requirements have focused much research on a variety
of techniques to reduce maximum power and leakage. Simultaneously,
efforts are being made to adapt microarchitectural features to the cur-
rent needs of an application. We focus instead on adapting large scale
resources to the current needs of a server farm.

We study the efficacy of powering on and off CPUs in symmetric mul-
tiprocessors (SMP). We develop a number of different predictive and
reactive techniques for identifying when cores should have their state
altered. We present results for these policies and find a hybrid policy
presents a reasonable balance between the time necessary to predict fu-
ture needs and the accuracy of these predictions. It maintains 97% of
the original system performance while reducing the energy per web in-
teraction by 25%.

1 Introduction

Power has become a major design consideration in modern processors. The lim-
ited battery capacity of portable devices has led to the inclusion of a variety
of power-saving techniques including voltage scaling and clock gating. While
early efforts have focused on mobile devices, power and thermal concerns are be-
coming problematic even in servers. Current symmetric multiprocessor (SMP)
servers have few, if any, CPU power-saving features beyond clock gating. In
many servers, the CPUs consume a substantial fraction of the system power [1].

Many servers have variable workloads and thus variable resource utilization.
Figure 4 shows the number of connections made to a Web server over the course
of a 24 hour period. If these requests are distributed across a 4-way SMP, there
are periods during which the demand can be handled by fewer than 4 CPUs.
These periods of low utilization can be exploited to reduce the operating power
of a server.

This paper describes a method for integrating SMP CPU power management
with the CPU scheduler in the Linux 2.5 kernel. When a system is completely
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utilized, there is no opportunity for saving CPU power without reducing per-
formance; all CPUs must be in the running state. When the workload does
not demand full utilization, the default Linux scheduling policy saves no power
because the utilization is equalized across all CPUs.

We propose alternate policies which consolidate threads on to the fewest
number of CPUs while limiting performance degradation. Because CPUs are not
always completely utilized, power can be saved by scaling or turning off unused
CPUs. We expect that when the global CPU utilization is less than (n − m)/n,
then m CPUs out of n can be turned off, saving substantial power. Since CPUs
cannot be turned on instantly, some CPU capacity must be held in reserve for
bursts. For this reason we never turn off all CPUs.

(A) 4 CPUs on (B) 3 CPUs on (C) 2 CPUs on (D) 1 CPU on
25% utilization each 33% utilization each 50% utilization each 100% utilization

Fig. 1. Different utilization distributions in a 4-way SMP system

A simple, illustrative example of
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Fig. 2. Applying low power modes, such as
deep sleep, to idle processors can signifi-
cantly reduce the power consumption of the
machine. In this example, a total cpu uti-
lization of 100% uses different amounts of
energy depending upon the utilization dis-
tribution and the low power modes

CPU packing is presented in Figure 1.
A 4-way SMP system has a maximum
utilization of 400% (100% * 4 CPUs).
In this example, the system has a to-
tal utilization of 100%. There are 4
different ways to distribute the work-
load across the available CPUs. The
standard Linux scheduler will load bal-
ance and achieve approximately the
distribution shown in Figure 1A. Each
CPU will carry 25% of the load. How-
ever, this is wasteful because 75% of
the resources on each CPU are un-
used. If one CPU was shut down or
placed into a deep sleep mode, each

of the remaining CPUs would have a utilization of approximately 33% as shown
in Figure 1B. Turning off an additional CPU will distribute 50% of the load
onto each of the remaining CPUs (Figure 1C). Finally, Figure 1D shows all of
the load could be serviced by a single CPU remaining on with a utilization of
100%. Figure 2 shows an estimate of the potential power savings for each of these
configurations. The ability to turn CPUs of or even place them into a deep sleep
state provides a significant power reduction. Simply idling unused resources does
not provide a reduction in power.
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Fig. 3. CPU utilization on a 4-way SMP for a TPC-W workload with the financial
profile

A more realistic example is drawn from the workloads we use in this study.
The details of the workloads and power metrics used are presented in Section 4.
The utilization shown in Figure 3A corresponds to the a normal Linux scheduler
running on a 4-way SMP system for the input requests shown in Figure 4A. If
we instead take a conservative estimate of allowing no single CPU to reach over
85% CPU utilization while simultaneously packing the available jobs into the
minimal number of CPUs, we are able to place unused CPUs into a deep sleep
mode or even turn them off entirely. A packed utilization is shown in Figure 3B.
Any time a CPU is unused, it can be placed into a lower power mode. When
no power savings mode is used, 100% of the original power is used; a deep sleep
mode consumes only 55% of the original power; turning idle CPUs off consumes
only 40% of the original power.

We will discuss and compare the power and performance of several policies.
Although the necessary microarchitectural support is not yet available, a pre-
liminary analysis is possible. In Section 2, we discuss the related work. Section 4
describes our experimental setup and the modifications made to the Linux ker-
nel. Our CPU packing policies are presented in Section 5. Results are discussed
in Section 6. Section 7 summarizes our work and presents possible future direc-
tions.

2 Related Work

Prior work in the area of OS-level power management has been on uniprocessor
machines which use voltage scaling to exploit the energy savings predicted by
P = CV 2f . Non-uniprocessor efforts have been in the area of cluster systems
where it is possible to exploit both voltage scaling and the power reductions via
turning on and off machines in the cluster.

Weiser et al. laid the early groundwork for the use of voltage scaling in unipro-
cessors [2]. Their work introduced the use of the PAST policy which we revisit
in this work in the context of SMPs. Govil et al. addressed some of the short-
comings, including jerky responses, of the PAST policy and developed the PEAK
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policy in response to the identified problems [3]. Pering et al. investigated the use
of interval-based voltage scaling [4, 5]. Their work includes the idea that some
intervals can be stretched to meet a deadline rather than completing the work
earlier.

Grunwald et al. implemented many of the proposed uniprocessor policies that
had previously been studied with simulators[6]. They found that the techniques
were often infeasible. In addition, the implemented policies failed to perform as
prior simulations had predicted they would.

Flautner et al. studied the effect of automatic performance setting techniques
using dynamic voltage scaling on interactive user tasks[7]. Their work eliminated
the need for the use of explicit deadlines by deriving deadlines based on kernel
activity. This allows voltage scaling techniques to be applied to a wide range of
non-periodic and even interactive tasks.

Bohrer et al. were among the first to consider power management for web
server farms[8]. They highlighted the fact that the resource requirements of web
servers vary over time and that this behavior can be exploited to reduce the
overall energy consumption of the server farm. They examined the effect of
voltage scaling and frequency scaling on the energy consumption of cluster-based
web server farms using a simulator.

Elnozahy et al. studied energy-efficient techniques for managing clusters used
in server farms[9]. They examine a number of different policies which use different
types of voltage scaling and powering down unused servers in the cluster. They
find that using coordinated voltage scaling in conjunction with varying nodes on
and off provides the largest energy reductions.

Rajamani and Lefurgy evaluated a variety of power aware request distribution
schemes for reducing energy consumption in server clusters used for serving web
traffic[10]. Their clusters consist of independent machines each of which can be
powered on and off separately. System utilization and system response time are
the among the factors considered in their work. Our policies are able to adapt
to changing utilizations much more quickly, which allows us to save more power
and waste fewer resources than cluster based schemes. Our policies eliminate the
need to have spare resources to meet possible upcoming demand.

Our work differs from the prior work in this area by focusing on SMP sys-
tems rather than clusters or uniprocessors. We study the effect of using simple
uniprocessor-like policies coupled with techniques that are infeasible in unipro-
cessors. Similarly our work differs from prior cluster-based efforts in that we are
able to respond much more rapidly to changes in resource requirements.

3 Model

Go reread the pard-dvs model development to see how they presented it.
This model can be extended to cover NUMA architectures be weighting the

power up and down costs by the.
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4 Methodology

Although we developed a theoretical model to describe the behavior of a CPU
packing-enabled system, we felt that experiments on real, commercially available
hardware would be best able to demonstrate the benefit of CPU packing.

4.1 Workload

All experiments were performed using the TPC-W benchmark [11, 12]. TPC-
W is a transactional Web e-commerce benchmark which simulates an online
bookstore. We use a TPC-W implementation based on Apache 1.3.23, PHP 4.1.2,
and MySql 4.0.13. We ran the Web server and database on the same machine.
Although all three Web interaction mixes were tested initially, we focused our
further efforts on WIPS, the Web Interactions Per Second for the shopping mix
consisting of 80% browsing and 20% ordering. Preliminary results for WIPSb
(95% browsing, 5% ordering) and WIPSo (50% browsing, 50% ordering) modes
were also examined, but detailed results are presented only for WIPS.

Because TPC-W is a probabilistic benchmark, our client browser emulator
is execution-driven instead of trace-driven. This makes it much easier to change
the parameters of the workload, but benchmark runs are not completely repeat-
able since random numbers are used for think times and state transitions. We
modified the client browser emulator to always use the same seed for its random
number generator, producing more repeatable runs. We observed a variance of
approximately 7% between results of different runs with identical parameters.
This variance may be due to interference from other traffic on our test network.
Baseline cases, in which no cpu packing was performed, were run five times each.
Due to limited resources and the size of the design space we were exploring, we
were unable to repeat all subsequent experiments. In light of these constraints,
we do not present variances on our individual results, but ask the reader to keep
in mind our initial analysis of a 7% variance due to factors not controlled in our
experiments.

Our benchmark database consisted of 10,000 items and 288,000 initial cus-
tomers. The client browser emulator makes a specified number of simultaneous
connections to the TPC-W server. We determined that our test system can han-
dle 100 simultaneous connections while meeting all of TPC-W’s response time
requirements.

Profile Data Based Workloads. Profiled workloads were used to generate
variable loads on our server. They specify the number of connections the client
browser emulator makes to the TPC-W server. We used two different sets of
profile data in conjunction with our client emulator. Both profiles cover 24 hours.
The profiles were derived from Web server access logs and have been translated
into a format supported by the Rice TPC-W implementation. The first profile
is taken from the access logs of a major financial services Web site on October
19, 1999 (see Figure 4A). The second profile derives from access logs collected
on February 19, 1998 at the 1998 Nagano Winter Olympics (see Figure 4B).
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The profiles are scaled to provide 100 simultaneous connections to our server
during their peak utilization. Although these profiles each represent 24 hours,
we compressed each profile to a single hour to allow for feasible experimental
runs. The shapes of the profiles remain the same, but the rate of change of the
number of connections is greater in the compressed profile. Rapid changes in
the number of connections and, hence, the utilization often prove difficult to
manage, but they are a good test of the applicability of a responsive technique
to time-varying demands.

(A) Financial (B) Olympics

Fig. 4. One-day workload profiles used in our experiments

4.2 Hardware

Our experiments were performed on a 4-processor 400 MHz Pentium II Xeon
system with a 450NX chipset and 1GB of memory. Each CPU had a 1 MB L2
cache.

4.3 Prototype Implementation

We conducted our experiments using Linux 2.5.70. Our CPU packing policies
are implemented in a userspace application, written in C, which periodically
samples the utilization of each CPU using /proc, predicts the aggregate CPU
utilization over the next interval, and turns CPUs on or off as necessary.

We are not aware of any SMP servers which allow CPUs to be powered on
and off dynamically, so we attempted to simulate this behavior on a normal
server. A “CPU Hotplug” patch which allows CPUs to be enabled and disabled
dynamically is in development for Linux[13], but it was not complete enough for
our experiments. With these restrictions in mind, we used a simple user space
technique to simulate turning CPUs on and off.

To simulate a CPU that is off, we create a process with SCHED FIFO
scheduling policy and set its affinity for the CPU that is to be turned off; this
process simply clears the caches and then busy-waits until it receives a signal.
Since SCHED FIFO processes owned by the root user are never preempted and
have strictly higher priority than normal (SCHED OTHER) processes, the Linux
scheduler migrates all other processes off the target CPU. When this realtime
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process is running, the CPU is considered “off”. When the workload demands
that the CPU be reclaimed, we send a signal to kill the “off” process. This
approach allowed us to simulate CPU packing with no changes to the kernel.

The policies considered are explored in depth in Section 5.

4.4 Power Estimation

Since we could not actually turn off CPUs during our experiments, we cannot
measure the power savings caused by CPU packing by directly measuring CPU
power consumption. However we are able to estimate CPU power over a run
based on a CPU utilization trace because power consumption of modern CPUs
is highly correlated to utilization. Our CPU packer writes its power manage-
ment decisions to a log, which allows us to properly account for power using
postprocessing.

Our power model is parameterized using measurements of a 3.06GHz Pentium
4 (Northwood) with HyperThreading disabled. We use data from a more modern
processor because we feel these are more representative of the current state of low
power design; specifically, we were interested in using numbers that reflect the
effect of clock gating. We focus only on the processor power, but it is possible
that relative power savings will be higher than those reported in this study
because of the ability to turn off fans as well.

We use the least squares fit of the measured data to determine how much
power is being consumed by each processor in the SMP based on its current
utilization. Power = 0.547WUt + 15.064W is used throughout our calculations.
The total power consumption is simply the sum of individual power consump-
tions for each CPU. In this paper, we present only power consumed by CPUs; a
complete system will consume more power.

4.5 Metrics

Our primary performance metric is whether a run meets the response time cri-
teria defined by TPC-W; these criteria require that 90% of the interactions of
each type have a response time less than a defined threshold, which varies for
each interaction type. These response time thresholds are in the range of 3-20
seconds. The response time metric does not represent a complete picture of how
a policy performs.

We are also interested in system throughput which we define as the number
of completed interactions during a run. Although the number of simultaneous
connections is fixed by the profile, the number of interactions completed by each
connection depends on the response time of each interaction, which depends on
system utilization. Thus we observed varying throughput even though the load
and response time requirements were the same for all of our experiments.

Because load varies during our experiments, power consumption also varies.
The total energy consumed during a run is not a good metric since the number
of interactions varies. Thus we focus on energy per interaction as our primary
metric of power savings.
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We are also interested in the number of transitions made between states. A
high number of transitions can be indicative of responsiveness to change or an
indication that the current data sampling window is too small. In addition, it is
currently unclear what impact, if any, a high number of transitions between the
on and off states may have on the reliability and failure rates of CPUs. Frequent
cycling may introduce stresses which can reduce the reliability of CPUs. We
choose a conservative approach if it does not have a signficantly negative impact
on the other metrics.

4.6 Assumptions

We make a number of conservative assumptions in our experiments. We inten-
tionally overestimate the time and power penalties associated with transitioning
from “on” to “off” and “off” to “on”. In addition, we overestimate the power
consumed by the “off” state. These assumptions are itemized below.

– Utilization Thresholds - We increase the number of CPUs, m, by one
when the utilization is greater than 85% of the current supportable maxi-
mum. We decrease the processors by when the utilization is less than 85%
of the maximum total utilization of (m − 1) CPUs.

– Transition Times - Our original intent was to use the CPU hotplug patch
to the Linux kernel to actually remove processors from the pool of processors
available for scheduling. However, at the time of our experiments, this patch
did not work on our 4-way server. We measured the transition time to be
<< 0.5 seconds on a different system. We conservatively use 0.5 seconds as
our transition time for turning processors“on” and “off”. During this time,
no processes may be scheduled onto the transitioning processor.

– Transition Power Costs - We chose to use a real time process to mimic
removing a processor from the pool, but our CPU packer now must be more
aware of the transitioning of states so that we can correctly record what
would have happened if the processor had actually been turned off. We
conservatively assume that the processor is fully utilized during both tran-
sitions. In reality, the transition process is not CPU intensive, but we chose
to model it as such to ensure that we do not underestimate the power costs
of transitions.

– Power Consumption in the Off State - We assume that the CPU is
placed in a deep sleep state similar to Intel’s “Deeper Sleep” mode. Rather
than consume zero watts, we assume that our “off” state consumes half as
much power as a running processor with zero utilization. Such a state does
not currently exist on Intel’s non-mobile processors, but we chose to include
the impact of its use in this study. In mobile processors, the “Deeper Sleep”
mode consumes less power than the “Deep Sleep” mode by scaling Vdd in
addition to gating the chip input clock.
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5 CPU Packing Policies

A CPU packing policy monitors the CPU utilization and determines if and
when a CPU should change state. When the aggregate CPU utilization drops
below the utilization that can be supported by N-1 CPUs, CPU N is turned
“off”. Similarly, when the utilization criteria indicated that the N CPUs are
overly utilized and there are CPUs in the “off” state, CPU N+1 is turned “on”.
The process of turning “on” and “off” CPUs involves transitioning through an
additional state in each direction. These states, “up” and “down”, are necessary
because they transition architectural and cache data to and from the CPU. We
assumed that “up” and “down” each take 0.5 seconds and consume full CPU
power during the transition. This simple mechanism is then used in the context
of our different CPU packing policies.

We examine a number of existing

Fig. 5. Relationship File specifies how
many CPUs followed by the order in
which they are turned off

policies. These policies have in the past
been applied to scheduling problems
and have been used to control fre-
quency and voltage scaling as well as
microarchitectural changes. To our
knowledge they have not been applied
to the process of predicting the num-
ber of processors to be used by an
SMP. We chose to examine policies
in order of increasing implementation
complexity. As a result, we studied no

predictive mechanisms because our reactive mechanisms proved adequate. We
do include an oracle policy to provide an indication of the best possible results
using our current set of assumptions (discussed in 4.6).

All our policies use a simple file-based relationship map to determine which
processors should be turned on or off. This map can easily be extended to cover
much more complicated architectures such as an IBM pSeries 670 which con-
tain multi-chip modules or a Pentium 4 Xeon SMP by taking into account the
system design when building the map. Our system consisted of four unrelated
processors so we simply shut them off from highest processor number to low-
est processor number. We rely on the Linux scheduler to load balance between
the “on” processors. The relationship file used in our experiments is shown in
Figure 5.

5.1 Oracle

We use the oracle policy to provide an upper bound on the achievable results.
The data collection run is done in which no CPU packing occurs, but all CPU
utilization is collected. The utilization logs are fed to the oracle which then
determines how many CPUs will be needed at each instant in the run.
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5.2 PAST

The PAST policy was originally developed by Weiser et al.[2] for use in unipro-
cessor systems. PAST uses only utilization information from the past sampling
interval and predicts that utilization in the next interval will be the same as the
utilization in the previous interval.

5.3 AVG< N >

Prior work by Grunwald et al. studied the use of an exponentially decaying
average as a utilization predictor[6]. The predicted utilization is governed by
equation Wt = NWt−1 + Ut/N + 1. where Wt is the predicted utilization, Wt−1

is the prediction from the previous increment, Ut is the current actual utilization,
and N is the weighting factor. A small value for N will rapidly reduce the
contribution to a negligible contributor while larger values of N include more
time. The sampling interval used is 1 second. For this policy, the utilization in
the next interval is assumed to be Wt. When this changes enough to indicate a
change is necessary, we add or subtract a CPU in our system.

5.4 Hybrid

While working with PAST and AVG< N >, we realized that each policy had
strengths and weaknesses. We introduce a hybrid policy composed of both PAST
and AVG< N > to address some of the shortcomings we observed. The hybrid
policy blends the rapid responsiveness of PAST with the longer view of chang-
ing demands provided by AVG< N >. PAST is used to respond to increasing
demands, while AVG< N > is used to decide when CPUs should be turned
off. AVG< N > in the hybrid is forced to respond more slowly to reductions in
demand by resetting the value of Wt−1 to Ut whenever PAST turns on another
CPU. In our hybrid implementation, a prediction of increased utilization takes
precedence over a prediction of decreased utilization.

6 Results

Each of the policies we examine work at least moderately well in same configura-
tion for our workloads. Previous researchers, such as Grunwald, et al [6], found
these policies failed when applied to uniprocessor voltage scaling. They work in
a CPU Packing SMP because there is usual some amount of unused resources
available to meet a sudden increase in demand and our workload demands vary
much more slowly than some of the traditional uniprocessor workloads such as
mpeg decoding.

6.1 Oracle

The oracle provides an estimate of the maximum possible savings as well as the
penalty for guessing wrong. Oracle results are not discussed here, but are used
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as a baseline for identifying how well PAST and AVG< N > do in comparison
to a reasonable approximation of the best case.

6.2 PAST

Sampling Interval Sensitivity. For the PAST policy, we began by studying
the effect of different sampling intervals on the responsiveness of the system.
The limiting factor in deciding how many connections to support during peak
utilization was the BestSellers Web interaction response time (WIRT) so we
focused our attention on the 90th percentile response time for this metric. Fig-
ure 6 shows that for both the financial and Olympics data sets, a very short
sampling interval is required to meet the BestSellers WIRT criteria. For rapidly
changing utilizations, a sampling time of 1 second was found to suffice. Anything
longer produced an initial degradation in response time that was unacceptable.
This result may be an artifact of scaling 24 hours of profile data into a 1 hour
period. Changes between the number of simultaneous connections are dramatic
when scaled to such a short time frame, while the changes are more gradual in
a longer duration run.

Our second metric of interest was
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Fig. 6. PAST response time vs. utilization
sampling interval

to study the amount of time PAST
spends in each of the different sys-
tem configurations (1 CPU on,
2 CPUs on, 3 CPUs on, 4 CPUs
on). A close match to the oracle is
desirable because it indicates that
the policy was able to correctly re-
spond to changing needs. Figure 7
compares PAST to the perfect Ora-
cle. Financial matches most closely

with a sampling interval of 15 seconds, while Olympics matches most closely
with a sampling interval of 10 seconds. However, the WIRT discussed above has
already limited the solution space to exclude these two sampling intervals.

The effects of different sampling intervals on throughput are shown in Fig-
ure 8. As expected from the system configuration data above, financial showed
the least throughput degradation (3%) with a sampling window of 15 seconds.
Olympics showed a throughput degradation of 2% at a sampling window of 10
seconds. These results indicate that if we could relax the response time criteria,
CPU Packing would have a negligible impact on throughput. For TPC-W’s re-
sponse time criteria, however, a 1-second sampling interval causes a 5% through-
put degradation. As mentioned previously, our experimental runs were found to
have a variance of approximately 7%.

Different Power Modes. Figure 9 shows a projection of the number of joules
necessary to complete each Web interaction compared to a system without
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CPU packing. The colored bars represent different hardware power modes: none,
“Deep Sleep”, and off, respectively. Financial with a 5 second sampling interval
is a bad case because it consumed nearly as much energy while suffering a 7%
throughput degradation. For both financial and Olympics, our chosen 1 second
sampling interval shows a significant reduction of energy per interaction. Over
25% less energy is required per interaction when CPU Packing is used.
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Number of Transitions. Turning server-class CPUs on and off may create
physical stress due to thermal expansion and contraction, potentially decreasing
mean time to failure. We consider how much stress PAST may place on a system
by examining the number of transitions between different system configurations.
Each transition means that a CPU has been turned off or on and cycles have
been wasted during the transition. We would like to minimize the transitions
while still providing good performance and energy savings. We have previously
selected a sampling interval of 1 second, but this places a potentially large strain
on the system with transitions occurring approximately every 3 seconds. We
believe this rate may be too high.
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6.3 AVG< N >

We next explored the AVG< N > policy for various values of N . We studied
the effects of using values of N of 2, 3, 4 and 5. These do not correspond to a
sampling interval, but instead to how quickly the input from a previous sample
is lessened relative to more recent contributions. Smaller values of N mean that
older contributions decay more rapidly than with larger values of N . The only
value of N which met the BestSellers WIRT criteria was N = 2. This result was
true for both financial and Olympics profiles and is not discussed any further
here.

We begin our AVG< N > analysis by examining the amount of time spent
in the various configurations in comparison to the oracle. Figure 11 shows that
financial matches the oracle well with N = 2 and Olympics matches most closely
with N = 3. However, because of the BestSellers WIRT, our solution space has
already been limited to N = 2 only.
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Figure 12 shows the relative number of interactions processed during the 60
minute experimental run. N = 2 shows a througput reduction of only 2%. This
grows to a throughput loss of 7% with N = 5. The performance results indicate
that AVG< N > may prove to be a good policy for CPU Packing.

Unfortunately, AVG< N > does not produce as large a savings in the energy
per interaction as PAST does (Figure 13). The energy savings are still substan-
tial so the policy is still viable and its applicability will probably be workload
dependent. AVG< N > performs well for slower changes in utilization.

Finally, we examine the stress AVG< N > may place on the system in
Figure 14. AVG< N >, even with N = 2, places far less stress on the system
than PAST with a sampling interval of 1 second. AVG< N > forces only 1/3
as many transitions as PAST for policy parameters that meet the BestSellers
WIRT criteria.

6.4 Hybrid

Both PAST and AVG< N > are promising policies, but we would like to com-
bine the best aspects of each. In light of this, we chose to study a hybrid policy
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that uses PAST to increase the number of CPUs and uses AVG< N > to de-
crease the number of CPUs. We found the hybrid reduced the stress on the
system while only marginally decreasing the power savings. We selected PAST
with a sampling interval of 1 and AVG< N > with N = 2 for our hybrid. It
has performance penalties and power savings similar to PAST (3% performance
loss, 25% reduction in joules per interaction), but only half as many transitions
between system configurations.

7 Conclusions

Our results indicate that CPU Packing is a promising technique. It allows a server
to respond to peak demands without paying the cost of constantly keeping all
the CPUs on line. During periods of lower demand, running jobs are packed into
fewer CPUs and the excess CPUs are placed into lower power states allowing
the server to consume less power.

We found that PAST and AVG< N > were reasonable policies for CPU
Packing. For each policy, we were able to identify a design point that met our
restrictive BestSellers WIRT criteria. Our results are also applicable to systems
with less stringent requirements where an increased delay in the response time
may be acceptable in the short term as long as the system is able to recover
quickly. Our hybrid policy combined the best elements of each policy to pro-
vide a solution which reduces system performance by only 3% while decreasing
the energy per interaction by 25%. It also minimizes the number of transitions
between the on and off/deep sleep states, reducing the potential strain on the
system.

We plan to expand our work to include different architectural and microar-
chitectural configurations. In addition, we plan to study additional policies with
more focus on predictive policies and the use of long duration phase history to
enhance these policies. Finally, we plan to study the suitability of using CPU
packing techniques on servers intended for interactive use rather than on those
meant only to serve remote requests.
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Abstract. This paper examines the limits of microprocessor energy re-
duction available via certain classes of architecture-level optimization. It
focuses on three sources of waste that consume energy. The first is the
execution of instructions that are unnecessary for correct program exe-
cution. The second source of wasted power is speculation waste – waste
due to speculative execution of instructions that do not commit their
results. The third source is architectural waste. This comes from subop-
timal sizing of processor structures. This study shows that when these
sources of waste are eliminated, processor energy has the potential to be
reduced by 55% and 52% for the integer and floating point benchmarks
respectively.

1 Introduction

Much research has been aimed at reducing the power consumption of processors,
including high-performance general purpose microprocessors. Power consump-
tion can be reduced at many levels, from the circuit level to the application
level. Our research explores the limits of power reduction available due to opti-
mizations at the architecture level. We identify three broad categories of wasted
energy that either have been, or could potentially be, targeted for reduction.
Those categories are program waste, speculation waste, and architectural waste.
The focus of this research is the reduction of power and energy dissipation in
high-performance, high instruction level parallelism processors. and that is the
context in which these limits are studied.

Program waste arises when program execution contains instructions that are
not necessary for correct execution. This includes instructions that produce ei-
ther dead or redundant values, or any instruction whose only consumers produce
dead or redundant values. We consider an instruction unnecessary if it produces
a dead value or does not affect any change on processor state (e.g., the contents
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c© Springer-Verlag Berlin Heidelberg 2004
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of registers and memory). Examples of power and performance optimizations
that target this type of waste include elimination of silent stores [38, 41] and
dynamically dead instructions [10].

Speculation waste results from speculative execution following mispredicted
branches. These instructions are fetched into the processor and consume pipeline
resources and energy, but are never committed and do not change permanent
processor state. Examples of energy and performance optimizations that target
this type of waste include pipeline gating [23] and aggressive branch predic-
tors [32].

Architectural waste results from the static sizing of architectural structures,
such as caches, instruction queues, branch predictors, etc. Memory array struc-
tures are often designed to hold a large amount of data in order to obtain good
overall performance, but a given program usually cannot exploit this at all times.
Instruction queues are designed with a large number of entries when often there
is little parallelism in the running code. For performance reasons, these struc-
tures are made as large as possible. Making them too small can also waste power
(causing more miss traffic, increasing misspeculation, etc.). This study examines
the power dissipation of caches and instruction queues that are always exactly
the right size. Examples of power and performance optimizations that target
this type of waste include selective cache ways [1] and dynamically resized issue
queues [14].

The analysis in this paper assumes an aggressive, dynamically scheduled wide
superscalar processor. Because this is a limit study, we make no assumptions
about how or to what extent these sources of waste are avoided. Some of the
techniques to avoid the waste are obvious, or have been investigated before,
others are more difficult to imagine. In this paper, we strive to not let our imag-
ination constrain the evaluation of the limits of architectural power reduction.

This paper is organized as follows. Section 2 describes related work. Section 3
describes the simulation and experimental methodology used in our experiments.
Section 4 describes program waste and its associated energy costs. Section 5
describes speculation waste and quantifies the cost of speculative execution.
Section 6 describes architectural waste. Section 7 demonstrates the effect on
energy consumption when the three sources of waste are removed. The paper
concludes in Section 8.

This is the background for the power limit paper

2 Related Work

Program waste occurs when instructions that are either dead or redundant are
executed by the processor. Prior works have studied particular types of un-
necessary instructions. Specific prior work has targeted dynamically dead in-
structions [10, 24], silent stores [20, 38, 41], silent loads [21, 25, 38], silent regis-
ter writes [16, 24, 37], and predictably redundant instructions [9, 33]. Each of
these works provides a technique for dynamically identifying and predicting
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unnecessary instructions. Many of them only study the performance gains from
eliminating execution of the these instructions.

A further analysis of unnecessary instruction chains is provided in [30]. In [30],
Rotenberg similarly identifies sequences of instructions that are executed, but
do not contribute to program correctness. That work analyzes sequence lengths
of unnecessary instructions and proposes predicting such sequences.

Speculation waste occurs when instructions are fetched and executed after
a mispredicted branch. One approach to solving this problem is to improve the
accuracy of branch predictors. This has been extensively studied. Work that at-
tempts to minimize the energy effects of misspeculated instructions is much more
limited. Pipeline gating [23] addresses the problem of misspeculation by keeping
instructions from continuing down the processor pipeline once a low-confidence
branch has been fetched. By limiting the number of instructions fetched after
an often mispredicted branch, the amount of energy wasted can be minimized.
A similar concept is presented by Bahar et al. [3]. Seng et al. [31] demonstrate
that multithreaded execution [36] conserves a significant amount of energy by
relying less on speculation to achieve performance.

Suboptimal sizing of processor structures exists when hardware structures
are inappropriately sized, both statically and dynamically, for program behavior
and the different phases of program behavior. An approach to solving this prob-
lem for caches has been dynamic reconfiguration of cache structures. This has
been studied in [5, 19, 29, 39, 40]. Another general technique to reduce the power
consumption of caches is to power down parts of the cache that are unused [1, 27].

Several papers have proposed techniques for reducing the energy consumption
of the instruction issue logic. A common approach to reducing the energy of the
issue queue has been to dynamically reconfigure the issue window size [11, 12,
14, 15]. The authors note that most instructions are issued from the head of the
issue queue. They propose particular implementations of dynamically resized
issue queues in order to gain power savings. Other work, in contrast, resizes the
issue queue on the basis of available parallelism [4, 17].

Another technique to lessen the cost of suboptimal sizing is hierarchical de-
signs. This model includes deeper cache hierarchies [2], as well as hierarchical
instruction queues [28].

Some areas that we do not study include the branch predictor, the functional
units, and the register file. Energy optimizations for branch predictors are studied
in [26]. Some proposed architecture-level optimizations for functional units are
described in [4, 7]. Register file optimizations include hierarchical register files [6].

3 Methodology

Simulations for this research were performed with the SMTSIM simulator [35],
used exclusively in single-thread mode. In that mode it provides an accurate
model of an out-of-order processor executing the Alpha instruction set architec-
ture. The simulator was modified to include the Wattch 1.02 architecture level
power model [8].
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Table 1. The benchmarks (integer and floating point) used in this study, including
inputs and fast-forward distances used to bypass initialization

Benchmark Input Fast forward

(millions)

crafty crafty.in 1000

eon kajiya 100

gcc 200.i 10

gzip input.program 50

parser ref.in 300

perlbmk perfect.pl 2000

twolf ref 2500

vortex lendian1.raw 2000

vpr route 1000

art c756hel.in 2000

equake inp.in 3000

galgel galgel.in 2600

gap ref.in 1000

mesa mesa.in 1000

mgrid mgrid.in 2000

Table 2. The processor configuration modeled

Parameter Value

Fetch bandwidth 8 instructions per cycle

Functional Units 3 FP, 6 Int (4 load/store)

Instruction Queues 64-entry FP, 64-entry Int

Inst Cache 64KB, 2-way, 64-byte lines

Data Cache 64KB, 2-way, 64-byte lines

L2 Cache (on-chip) 1 MB, 4-way, 64-byte lines

Latency (to CPU) L2 18 cycles,

Memory 300 cycles

Pipeline depth 8 stages

Min branch penalty 6 cycles

Branch predictor 21264 predictor

Instruction Latency Based on Alpha 21164

The SPEC2000 benchmarks were used to evaluate the designs, compiled us-
ing the Digital cc compiler with the -O3 level of optimization. All simulations
execute for 300 million committed instructions. The benchmarks are fast for-
warded (emulated but not simulated) a sufficient distance to bypass initialization
and startup code before measured simulation begins. Additionally, the processor
caches and branch predictor are run through a warmup period of 10 million cy-
cles before data collection. Table 1 shows the benchmarks used, their inputs, and
the number of instructions fast forwarded. In all cases, the inputs were taken
from among the reference inputs for those benchmarks.
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Details of the simulated processor model are given in Table 2. The processor
model simulated is that of an 8-fetch 8-stage out-of-order superscalar micropro-
cessor with 6 integer functional units. The instruction and floating-point queues
contain 64 entries each, except when specified otherwise. The simulations model
a processor with instruction and data caches, along with an on-chip secondary
cache.

For the experiments involving program waste, a trace of 300 million dy-
namic committed instructions is captured. Dynamic instruction instances are
then marked in the trace if they are determined to be unnecessarily executed.
Producers for these instructions are also considered unnecessary and marked if
all their dependents are either unnecessary or producers for unnecessary instruc-
tions. In order to capture the dependence chain of instructions, the instruction
trace is processed in reverse order.

In order to model the effect of removing the energy usage of dynamic instruc-
tion instances, the trace is used as input during a second simulation run. Care
was taken to ensure that the same instructions were executed for each run of the
simulator - this guaranteed that only the effects of the dead and redundant in-
structions were being measured. When an instruction is marked as unnecessary,
we emulate it in the simulator but do not charge the processor for the energy
cost of any aspect of its execution.

4 Program Waste

Many instructions that are executed do not contribute to the useful work per-
formed by the program. These instructions may include ones which produce
values which will never be used, those instructions which do not change proces-
sor state in any way, or which predictably change program state in the same
way. In this work, we quantify the impact of these redundant instructions on the
energy usage of a processor. We start by examining those instructions that do
not do useful work (either produce dead values or do not change program state).

4.1 Unnecessary Instructions

Instructions which do not do useful work for program execution are considered
unnecessary. We classify unnecessary instructions into a number of categories.

Dead instructions (dead in Figures 1 and 2). Instructions which produce dead
values are instructions where the destination register will not be read before
being overwritten by another instruction. In addition, store instructions are also
considered dead if the memory location written is overwritten before being read
by a load instruction. A dead instruction can produce a value which is dead for
every execution instance (statically dead, because of poor instruction scheduling
by a compiler) or for select instances (because of a particular path taken through
the code).
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Fig. 1. Processor energy waste due to unnecessary instructions

Silent stores (stores). These are store operations where the value stored is the
same as the value already at the address being stored to. Prior research has
shown techniques which identify these instructions and remove them from the
instruction stream [38, 41]. Removing silent stores from the dynamic instruction
stream improves performance by reducing the memory traffic generated by these
instructions.

Silent loads (loads). These are similar in nature to silent stores. Silent loads are
load instructions where the value being loaded is the same as the value already
in the destination register.

Silent register operations . Silent integer register operations (sir) are those inte-
ger instructions whose result is the same as the value already in the destination
register. Similarly, silent floating point operations (sfp) are those instructions
where the resulting value is the same as the destination floating point register.

Silent conditional moves (cmov). These are conditional moves where the condi-
tion is not met and the move does not occur.

In addition to the dynamic instruction instances determined to be unneces-
sary, in many cases the producers of values consumed by those instructions can
be marked unnecessary as well, as long as the value only gets used by instruc-
tions already deemed to be unnecessary. Since we search the dynamic trace in
reverse order, this can be determined with a single pass through the trace. In fol-
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Fig. 2. Processor energy waste due to unnecessary instructions and their producers

lowing chains of unnecessary instructions, we only follow register dependences,
assuming that values passed through memory are useful.

Program Waste Results. Figure 1 shows the percentage of total processor
energy used for the execution of each type of program waste. The results shown
represents the energy waste only due to those instructions which are marked as
unnecessary and does not include the producers for those instructions. The data
is shown for each of the integer benchmarks, the average of the integer bench-
marks, each of the floating point benchmarks, and the average of the floating
point benchmarks. The categories of unnecessary instructions are mutually ex-
clusive except for the dead category where instructions are marked regardless
of their type. The all category represents accounting for all types of program
waste.

For the integer benchmarks, the most significant sources of program energy
waste are due to dead (8.2%) and silent integer operations (7.4%). The eon
benchmark wastes more energy with dead instructions (16.0%) than any other
integer benchmark. Removing the energy costs of silent conditional operations
provides little change (0.7% for the average). For the average of the integer
benchmarks the total waste is 20.6%.

For the average of the floating point benchmarks, most waste is due to silent
loads, silent integer, and silent floating point operations. Some of the floating
point benchmarks exhibit very little waste for silent floating point operations
(art and gap); for the galgel benchmark, this waste is significant at 30.6%. As
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Fig. 3. Percentage of total energy that is wasted due to misspeculated instructions

with the integer benchmarks, little energy is wasted on silent conditional moves.
The average total program waste for the floating point benchmarks is 23.1%.

When including the instructions whose only contribution is to produce values
for unnecessary instructions (Figure 2), the potential energy savings increases
significantly. The waste due to dead instruction chains is 14.1% and the waste
due to silent integer instruction chains is 18.8%.

For the floating point benchmarks, silent floating point and silent store in-
struction sequences are the leading sources of energy waste. The galgel bench-
mark has an exceptionally large number of unnecessary silent floating point
instruction chains (77.4% energy wasted). For these benchmarks, when counting
the producer instructions for the silent stores, the total energy waste is signifi-
cant (24.1%). This demonstrates that in the floating point benchmarks there are
long sequences of instructions to compute a store value, and often that store is
silent. In fact, for both integer and floating point programs, the category that
gained (relatively) the most when including producing instructions was the silent
stores.

It should be noted that the sum of the different sources of program waste are
not strictly additive. Some may be counted in two categories (e.g., an instruction
that is both redundant and dead). In fact, we see a high incidence of this ef-
fect when we include the producers, because many unnecessary instructions are
also producers of other types of unnecessary instructions. We only count these
instructions once for the all category. The total can also be more than additive,
because a producer instruction may produce a value which is then consumed by
multiple unnecessary instructions of different types, and is only considered un-
necessary in the case that we are considering all its dependents as unnecessary,
and thus only be counted in the all case.
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These results indicate that the potential for energy savings is much more
significant when including the chains of instructions that together produce an
unnecessary value. Considering all unnecessary instructions, the integer bench-
marks waste 37.7% of total energy. The total for the floating point benchmarks
is greater at 47.0%.

5 Speculation Waste

For high performance, a long pipeline requires the prediction of branches and
the execution of subsequent instructions. Figure 3 shows the effect on processor
energy usage of misspeculation. In this experiment, we simulate the benchmarks
2 times. In the first simulation we obtain the energy results for all instructions
entering the processor pipeline. In the second set of simulations, we only account
for the energy of those instructions which are committed. The effect of the mis-
speculation is much more significant in the integer benchmarks because of the
increased number of difficult to predict branches. For our benchmarks, there are
on average 3.3 times as many mispredicted branches in the integer benchmarks
as in the floating point benchmarks.

In this work, we have not studied the energy effects of other forms of specu-
lative execution (e.g. load speculation [13] or value speculation [22]). We focus
on control speculation as it will be an increasingly significant portion of total
energy waste as processor pipelines increase in length.

6 Architectural Waste

In this section we study how the architectural design of a processor can con-
tribute to the energy wasted during program execution. We define architectural
waste to occur when the size of a processor structure is not optimal for the cur-
rent state of the particular application currently executing. Suboptimal structure
sizing occurs when a resource on the processor is larger (or in some cases smaller)
than it needs to be for a particular program.

The structures we look at are the instruction and data caches, and the in-
struction issue queues. These represent a subset of all processor structures that
could be adaptively sized, but do represent key structures which consume a sig-
nificant amount of power and are typically sized as large as possible for peak
performance. Other memory-based structures that could be studied in a similar
manner include the register file, TLBs, reorder buffer, and the branch predictor.
A study of optimal structure sizing provides insight into the potential energy
savings to be gained given oracle knowledge of program behavior.

6.1 Cache Resizing

Because different programs have different memory behavior and access patterns,
a cache of fixed size and configuration is not optimal for all cases. In cases
where the processor is executing a tight loop, a large instruction cache is not
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Fig. 4. Potential cache energy savings with optimal cache sizing for the integer bench-
marks
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Fig. 5. Potential cache energy savings with optimal cache sizing for the floating point
benchmarks

necessary. This is also true for the data cache if the memory footprint of the
application is very small. In these instances smaller caches would provide the
same performance, but with lower energy requirements.
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In order to quantify the amount of energy wasted due to suboptimal cache
sizes, we need to model a cache that is of the perfect size for the application
currently being executed. To simulate the optimally sized cache, we simulate
a continuum of cache sizes and configurations (24 different instruction and 24
different data caches). The cache sizes range from 2KB to 64KB with associa-
tivities ranging from 1 way to 8 way. Each cycle we select the smallest (lowest
power) cache from among those (typically several) that hit on the most accesses.
To compute the energy savings, we compare the optimal results against our
baseline, a 64 KB 2-way cache.

In figure 4 we show the results of this experiment for the integer benchmarks.
The results for the floating point benchmarks are shown in figure 5. The data
represents the fraction of cache energy that is wasted due to a cache that is not
of optimal size at the time of access. The energy modeled represents energy due
to cache accesses and no other effects such as leakage.

The results show potential energy reductions for the integer applications of
54.1% of the total instruction cache power and 37.2% for the data cache. For
the floating point applications, the potential reduction is 55.7% and 36.8% for
the instruction and data caches, respectively.

6.2 Issue Queue Resizing

In an out-of-order processor, the size of the issue window greatly affects perfor-
mance. A larger window size allows a processor to extract more parallelism from
the code sequence it is currently executing. Although a large window is helpful,
there are instances where the instruction stream contains much less parallelism

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

cra
fty eo

n
gc

c
gz

ip

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x
vp

r ar
t

eq
ua

ke
ga

lge
l

ga
p

mes
a

mgr
id

in
t. a

vg
.

fp
 av

g.

pe
rc

en
ta

ge
 o

f i
q 

en
er

gy
 w

as
te

d

Fig. 6. Potential for energy savings available for optimally sized instruction queues
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than the maximum processor issue width. Additionally, the issueable instruc-
tions are frequently located in a small portion of the issue queue [14]. In this
case the wakeup logic and selection logic are much larger than necessary. It is
these instances for which we consider an instruction queue design to be wasteful.
This section quantifies that waste.

In order to measure the waste due to oversized issue queues, we compare
the energy used by a fixed size issue queue versus one that can be dynamically
resized. We assume that the dynamically resized queue is optimally resized every
cycle. An optimally sized queue is one where the queue contains the fewest
number of entries required to maintain the same performance (that is, issue
the same number of instructions over that interval) as a large fixed size queue.
In these experiments, the fixed size instruction queue contains 64 entries. The
energy shown for the integer benchmarks is for only the integer queue because of
the small number of floating point instructions in these benchmarks. The data
shown for the floating point benchmarks is for the sum total energy of the integer
and floating point queues.

Figure 6 shows the amount of instruction queue energy waste compared to an
optimally sized queue. The fraction of instruction queue energy wasted for the
integer benchmarks is 34.8% on the average. For the floating point benchmarks,
the waste is 43.0%.

7 Removing Program, Speculation, Architecture Waste

We now show the results of removing program waste, speculation waste, and
architecture waste. In these results, we run the simulations removing all energy
costs associated with all the instruction types that are considered to be unnec-
essary computation. In addition, all energy due to speculation and suboptimal
structure sizing are removed as well.

Figure 7 shows the results for the integer and floating point benchmarks,
respectively. For the integer benchmarks, the overall energy waste ranges from
48.4% to 62.4%, with an average of 55.2%. For the floating point benchmarks,
the overall energy savings ranges from 33.7% to 83.3%, with an average of 52.2%.

These results indicate that there are certainly significant gains to be had for
architecture-level power optimizations. However, it also shows that for a very
wide class of these optimizations, the total savings available are not huge. Order
of magnitude decreases in energy are not going to come from exploiting wasted
execution bandwidth and dynamic reconfiguration of conventional processors.
They will need to come from more profound changes to the way we architect
processors. Note that our analysis of dynamic resizing is not complete, as we
ignore some structures that can be made adaptable. However, the effect of the
other structures is not going to dramatically change the conclusion here.

Interestingly, the total energy wasted for the integer and floating point bench-
marks is similar, but comes from different sources. For the integer benchmarks,
speculation is much more of a factor than for the floating point benchmarks. In
both type of benchmarks, the biggest contributor was due to program waste.
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Fig. 7. Percentage of total energy wasted due to program and architectural waste

Regardless of how much speculation is removed from a processor or the sizing
of processor structures, the energy cost of executing sequences of unnecessary
instructions is large.

8 Conclusion

In this research, we examine the limits of architecture-level power reduction on a
modern CPU architecture. We assume that there are three opportunities to save
energy – do not do unnecessary computation (unnecessary speculation or dead
computation), do not do redundant computation, and do not power architectural
structures that are not needed (eliminate architectural waste via optimal sizing
of structures).

This paper quantifies the energy lost to three sources of waste: program waste,
speculation waste, and architectural waste. In the benchmarks we studied, we
demonstrate that 37.7% of the energy used in executing the integer benchmarks
is due to program waste. For the floating point benchmarks, 47.0% of the energy
is because of program waste. It also shows that to take full advantage of program
waste requires eliminating both the redundant instructions and their producers.

Speculation waste averages over 15% for the integer benchmarks, but is much
lower for the floating point.

Architectural waste occurs when processor structures are larger than required
and cannot be dynamically sized. An optimal instruction cache can consume 55%
less energy than a 64KB instruction cache. Similarly, an optimal data cache can
use 37% less than the baseline 64KB data cache.
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When all of these sources of waste are eliminated, the total energy of the
processor has the potential to be reduced by just over a factor of two for both
the integer and floating point benchmarks. While this represents a significant op-
portunity, it also indicates that radical advances in power and energy efficiency
require more significant architectural change than the adaptive techniques char-
acterized by this limit study.
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Abstract. Power is rapidly becoming the primary design constraint
for systems ranging from server computers to handhelds. In this paper
we study microarchitecture-level coupled power and thermal simulation
considering dynamic and leakage power models with temperature and
voltage scaling. We develop an accurate temperature-dependent leak-
age power model and efficient temperature calculation, and show that
leakage energy can be different by up to 10X for temperatures between
35oC and 110oC. Given the growing significance of leakage power and
its sensitive dependence on temperature, no power simulation without
considering dynamic temperature calculation is accurate. Furthermore,
we discuss the thermal runaway induced by the interdependence between
leakage power and temperature, and show that in the near future ther-
mal runaway could be a severe problem. We also study the microarchi-
tecture level coupled power and thermal management by novel active
cooling techniques that reduce packaging thermal resistance. We show
that the direct water-spray cooling technique reduces thermal resistance
from 0.8oC/W for conventional packaging to 0.05oC/W, and increases
system maximum clock by up to 2.44X under the same thermal con-
straints.

1 Introduction

Power is rapidly becoming the primary design constraint for systems ranging
from sever computers to handhelds, and the related thermal constraints are
also emerging as an important issue. Thermal stress caused by high on-chip
temperature and large temperature differentials between functional units may
lead to malfunction of logic circuits, p-n junction breakdown, and clock skew [4]
or ultimate physical failure of the microprocessor chip. Therefore, accurate power
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and thermal modeling is needed to develop and validate power and thermal
optimization mechanisms.

As semiconductor technology scales to smaller feature sizes, leakage power
increases exponentially because transistor threshold voltages are reduced in con-
cert with supply voltage to maintain transistor performance. For current high-
performance design methodologies, the contribution of leakage power increases
at each technology generation [1], and the Intel Pentium IV processors running
at 3GHz in 0.13um technology already have an almost equal amount of leak-
age and dynamic power [2]. The significance of leakage power exacerbates the
thermal problems since leakage power has an exponential dependence on tem-
perature [1]. Given this, power and thermal modeling is hardly accurate without
considering the inter-dependency between leakage and temperature.

Almost all existing microarchitecture-level power simulators Wattch [6], Sim-
plePower [5] and PowerImpact [7] do not consider temperature dependence of
leakage power and assume a fixed ratio between dynamic and leakage power. [9]
proposes a leakage power model with temperature dependence characterized by
a purely empirical formula, and further applies the model for a cycle-accurate
coupled power and thermal simulation. However, the temperature dependence
is characterized by a purely empirical exponential term exp( −a

T−b ) without pro-
viding a theoretical model, where a and b are coefficients and T is the tem-
perature. Voltage scaling is not considered for either dynamic or leakage power
in [9]. On the other hand, existing microarchitecture level thermal simulator
HotSpot [17] models the thermal package such as spreader and heatsink and
considers three dimensional heat transfer, but it fails to consider temperature
dependency of leakage. In short, there is no existing simulator with accurate
thermal modeling and accurate interdependence of temperature and leakage
power.

In this paper, we present power models with clock, voltage, and temperature
scaling based on the BSIM2 subthreshold leakage current model. We develop
a coupled thermal and power microarchitecture simulator considering interde-
pendence between leakage and temperature. With this simulator, we are able
to accurately simulate the inter-dependence between power and temperature
and evaluate microarchitectural power and thermal management techniques. We
show the dramatic dependence of leakage power on temperature at the microar-
chitecture level based on the thermal resistance and chip area of Intel Itanium
2 processors within the temperature range between 35oC and 110oC. We also
theoretically discuss thermal runaway induced by the interdependence between
leakage power and temperature. These studies underscore the need for coupled
power and thermal simulation. We further study the impact of active cool-
ing techniques. We show that the direct water-spray cooling technique reduces
thermal resistance from 0.8oC/W for conventional packaging to 0.05oC/W and
increases system maximum clock by up to 2.44X under the same thermal
constraints.

The rest of this paper is organized as follows. In Section 2, we develop dy-
namic and leakage power models with both voltage and temperature scaling. In
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Section 3, we introduce both transient and stable-state temperature calculation
and the experiments on thermal-sensitive energy simulations at microarchitecture-
level. In Section 4, we present the the impact of coupled power and thermal man-
agement with novel active cooling techniques. We conclude and discuss future
work in Section 5.

2 Power Model with Temperature and Voltage Scaling

We define three power states: (i) active mode, where a circuit performs an
operation and dissipates both dynamic power (Pd) and leakage power (Ps).
The sum of Pd and Ps is active power (Pa). (ii) standby mode, where a cir-
cuit is idle but ready to execute an operation, and dissipates only leakage
power(Ps). (iii) inactive mode, where a circuit is deactivated by power gat-
ing [12] or other leakage reduction techniques, and dissipates a reduced leakage
power defined as inactive power (Pi). A circuit in the inactive mode requires
a non-negligible amount of time to wake up before it can perform an useful
operation [7].

In cycle accurate simulations, power is defined as the energy per clock cycle.
Therefore, Pd is equal to 1

2fsCV 2 where C is the switching capacitance, V is the
supply voltage and fs is the switching factor per clock cycle. In essence, Pd is
the energy to finish a fixed number of operations during one cycle. Consistently,
Ps is defined as Pso ∗ t where Pso is leakage power per second and t is the clock
period. Same as Ps, Pi = Pio ∗ t is proportional to the clock period with Pio

being reduced leakage power in the inactive mode.

2.1 Dynamic Energy with Voltage Scaling

Dynamic energy is consumed by charging and discharging capacitances. It is in-
dependent of temperature, but has a quadratic dependence with supply voltage.
For VLSI circuits, the relationship between circuit delay and supply voltage Vdd

is delay ∝ Vdd/(Vdd − VT )2, where Vt is the threshold voltage. By assuming the
maximum clock fmax = 1/delay, the appropriate supply voltage to achieve fmax

can be decided by (1):

fmax ∝ (Vdd − VT )2/Vdd (1)

Therefore, the dynamic energy for each cycle varies to achieve different fmax.

2.2 Leakage Estimation with Voltage and Temperature Scaling

Leakage Model with Temperature and Voltage Scaling. Similar to [9],
we use the leakage power model for logic circuits as (2):

Ps = Ngate ∗ Iavg ∗ Vdd (2)
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where Ngate is the total number of gates in the circuit and Iavg is the average
leakage current per gate. We further consider temperature and voltage scaling
according to the BSIM2 model subthreshold current model [1] as shown in (3):

Isub = Ae
(VGS−VT −γVSB+ηVDS)

nVT H

(
1 − e

− VDS
VT H

)
(3)

A = μ0Cox
W

Leff
VTH

2e1.8 (4)

where VGS , VDS and VSB are the gate-source, drain-source and source-bulk volt-
ages, respectively; VT is the zero-bias threshold voltage, VTH is the thermal volt-
age kT

q , γ is the linearized body-effect coefficient, η is the Drain Induced Barrier
Lowering (DIBL) coefficient, μ0 is the carrier mobility, Cox is gate capacitance
per area, W is the width and Leff is the effective gate length.

From (3) we can see the temperature scaling for leakage current is T 2e−
1
T ,

where T is the temperature, and the voltage scaling for leakage current is
e−(αVdd+β), where α and β are parameters to be decided. Based on these obser-
vation, we propose the following formula for Iavg considering the temperature
and voltage scaling:

Iavg(T, Vdd) = Is(T0, V0) ∗ T 2 ∗ e

(
−α∗Vdd+β

T

)
(5)

where Is is a constant value for the reference temperature T0 and voltage V0.
The coefficients α and β are decided by circuit designs. Values for α and β as
well as validation of (5) will be presented in Section 2.2.

We also improve the formula in [9] with better temperature and voltage
scaling as shown in (6) - (8):

Pso = Pcircuits + Pcells (6)

Pcircuits(T, Vdd) = (X ∗ words + Y ∗ word size) ∗ Vdd ∗ T 2 ∗ e

(
−α∗Vdd+β

T

)
(7)

Pcells(T, Vdd) = (Z ∗ words ∗ word size) ∗ Vdd ∗ T 2 ∗ e

(
− γ∗Vdd+δ

T

)
(8)

where Pcells is the leakage power dissipated by SRAM memory cells and Pcircuits

is the power generated by the circuits such as wordline drivers, precharge tran-
sistors, and etc. Pcircuits essentially has the same format as (2) as X ∗ words +
Y ∗ word size in (7) can be viewed as Ngate, and the scaling in Pcircuits is the
same as (5). Pcells is proportional to the number of SRAM memory cells. X,
Y , Z, γ and δ in (7) and (8) are coefficients decided by circuit designs. Values
for X, Y , Z, γ and δ as well as validation of (7) and (8) will be presented in
Section 2.2.

Leakage Model Validation. We collect the power consumption for differ-
ent types of circuits at a few temperature levels by SPICE simulations. We
then obtain the coefficients in (5) - (8) by curve fitting. Table 1 summarizes the
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Table 1. Coefficients in (5) - (8) for 100nm technology, where MTCMOS and VRC
are the power gating techniques for logic and SRAM arrays, respectively

Logic circuits Memory based units
X Y α β Z γ δ

Power gating 3.5931e-12 1.2080e-11 -1986.1263 4396.0880 8.7286e-11 -443.2760 3886.2712
No power gating 5.2972e-10 1.7165e-9 -614.9807 3528.4329 5.2946e-10 -711.9226 3725.5342

Table 2. Comparison between our formula and SPICE simulation. Iavg and Pso are
for logic circuits and SRAM arrays, respectively. The SRAM arrays are represented
as “row number” x “column number”. The units for Iavg and Pso are uA and uW,
respectively

Iavg or Pso

Circuit Temperature (oC) Vdd formula SPICE abs. err. %
adder 100 1.3 0.0230 0.0238 3.74

50 1.3 0.00554 0.00551 0.71
multiplier 100 1.3 0.0209 0.0217 3.83

50 1.3 0.00493 0.00506 2.63
shifter 100 1.3 0.0245 0.0255 3.92

50 1.3 0.00592 0.00585 1.32
SRAM 128x32 50 1.3 54.1 56.8 4.81

50 1.0 21.62 22.31 3.07
SRAM 512x32 50 1.3 211.7 227.2 6.85

50 1.0 84.41 88.83 4.98

coefficients for ITRS 100nm technology we used. Table 2 compares our high-
level leakage power estimation for logic circuits and SRAM arrays with SPICE
simulations in ITRS 100nm technology. We use different circuits and temperature
during curve fitting and verification. The overall difference between our formulas
and SPICE simulation is less than 7%.

3 Coupled Power and Thermal Simulation

3.1 Temperature Calculation

We develop the thermal model based on conventional heat transfer theory [13].
The stable temperature at infinite time can be calculated according to (9):

T = Ta + Rt ∗ P (9)

where T is the temperature, Ta is the ambient temperature, P is the power
consumption, and Rt is the thermal resistance, which is inversely proportional
to area and indicates the ability to remove heat to the ambient under the steady-
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state condition. According to (9), the heat loss to ambient can be modeled as
Po = (T − Ta)/Rt.

The unbalance between total power consumption P and heat loss to ambient
Po leads to the transient temperature T characterized by (10):

P − Po = CtṪ (10)

where Ct is the thermal capacitance. By substituting Po in (10) with (T −Ta)/Rt

we can get the differential equation (11):

RtCtṪ + (T − Ta) = RtP (11)

where Ṫ = ΔT/Δt and ΔT is the temperature change after a short time
period Δt. By manipulating (11) we can get (12) for the temperature change
ΔT :

ΔT =
PRt − (T − Ta)

τ
Δt (12)

where τ = RtCt is the thermal time constant. By solving (12) we can obtain
an exponential form for temperature T in terms of time t and power, as shown
in (13):

T = PRt + Ta − (PRt + Ta − T0) × e−
t−t0

τ (13)

where T and T0 are temperatures at two different time points t and t0. This
exponential form clearly shows that the power has a delayed impact on the
temperature. Note that our cycle-accurate simulation uses (12) directly to avoid
the time-consuming exponential calculation.

Same as [9], in our thermal model, we have two different modes with different
granularities to calculate the temperature: (i) individual mode. We assume that
there is no horizontal heat transfer between components, and calculate a tem-
perature for each individual component. In general, the horizontal heat reduces
the temperature gaps between components. So the individual mode essentially
gives the upper bound of the highest on-chip temperature and temperature gap.
(ii) universal mode, which is similar to the thermal model in TEM2P 2EST [10].
We assume the whole processor as a single component with a uniform thermal
characteristic and temperature. The universal mode gives the lower bound of
the highest on-chip temperature.

3.2 Experiment Parameter Settings

Although our power and thermal models are applicable to any architecture, we
study VLIW architecture in this paper. We integrate our thermal and power
model into the PowerImpact [7] toolset. The microarchitecture components in
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our VLIW processor include BTB, L1 instruction cache, L1 data cache, unified
L2 cache, integer register file, floating-point register file, decoder units, integer
units (IALUs) and floating-point units (FPUs). Among them, BTB, caches and
register files are memory-based units, while the others are logic circuits. When
calculating the power of memory-based units, we first partition the component
into pieces of SRAM arrays with CACTI 3.0 toolset [14], then apply our for-
mulas for power consumption of each SRAM array. The total component power
consumption is the sum of power of all SRAM arrays. For IALUs and FPUs, we
take the area and gate count in the design of DEC alpha 21264 processor [15],
and scale from 350nm technology down to 100nm technology. For decode unit,
we simply assume one decode unit has the same area and power consumption as
one integer unit.

Table 3. System configuration for experiments

Component Configuration
Decode 6-issue width
BTB 512 entries 4-way associative, Two-level predictor
Register file 128 integer and 128 floating-point registers with 64-bit data width
Memory page size 4096 bytes, latency 30 cycles
Memory Bus 8 bytes/cycle
Functional units Number Latency
Integer unit 4 1 cycle for add, 2 cycles for multiply

and 15 cycles for division
Floating-point unit 2 2 cycles for add/multiply, 15 cycles for division
Cache Size Block size Associativity Policy
L1 Instruction 64 KB 32 bytes 4 LRU
L1 Data 64 KB 32 bytes 4 LRU
L2 2MB 64 bytes 8 LRU

To obtain a set of reasonable thermal resistances for components, we set the
reference as the thermal resistance 0.8 oC/W for a chip with die size 374 mm2

similar to Intel Itanium 2 [16]. Based on this reference, for each component,
we calculate its thermal resistance as it is inversely proportional to its area.
The whole chip thermal resistance is calculated in the same manner. Table 3
presents the micro-architecture configuration of the VLIW processors we study.
Table 4 summarizes the power consumption, the thermal resistances and the
areas for all components in our system. According to the thermal time constant
for microarchitecture components without consider heatsink in [17], we set the
thermal time constants as τ = 100us, which is independent of component area.

To consider appropriate supply voltage scaling for varying clock, we assume
that Vt is 20% of Vdd and Vdd = 1V obtains 3GHz clock as specified by the
ITRS. According to Equation (1) the corresponding Vdd for a range of clocks in
our experiments is shown in Table 5.
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Table 4. Power consumption (in pJ/cycle), thermal resistance Rt and areas for all
components. For 100nm technology, we choose 1V supply voltage and 3GHz clock rate
as specified by the ITRS. The decode, integer ALU and FPU are only one unit among
total six, four and two units. The temperature is 35oC. Note the Ps is relative small
due to the low temperature

Rt Area
Component Pa Ps Pi (K/W ) (mm2)

BTB 119 1.23 0.0504 64.4 1.63
L1 Instruction Cache 535 1.145 0.0458 22.129 4.74

L1 Data Cache 460 1.145 0.0458 20.967 4.99
Unified L2 Cache 1858 34.2 1.37 1.401 59.8

Integer Register File 59.6 0.027 0.0011 24.692 4.24
FP Register File 35.8 0.0275 0.0011 84.844 1.24
One Decode Unit 79.2 0.68 0.0068 236.355 0.44

One IALU 79.2 0.68 0.0068 236.355 0.44
One FPU 158 0.68 0.0068 125.599 0.83

Table 5. Vdd after appropriate voltage scaling for different clocks

Clock (GHz) 2 3 4 5
Vdd (V) 0.667 1.0 1.33 1.667

(a) (b) (c)

Fig. 1. Whole chip temperature curves obtained by the universal mode for different
time step ts. The clock frequency is 2GHz. Three different starting temperatures are
chosen: (a) 35oC; (b) 40oC; and (c) 80oC. No throttling is applied. Therefore, the
results are independent of benchmarks

3.3 Chip Temperature

In our experiments, we update temperatures after each time step ts. We then
update the power value with respect to new temperature for each ts. Smaller
ts gives a more accurate transient temperature analysis, e.g., ts = 1 cycle rep-
resents the cycle accurate temperature calculation. Figure 1 plots the transient
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temperature for the whole chip calculated under different ts shown as the per-
centages of the thermal time constant, where 0.5% of the thermal time constant
is equal to 1000 clock cycles for a 2GHz clock. When ts ≤ 0.5% of the thermal
time constant, the temperatures are identical to those with ts = 1 cycle. Ob-
servable difference appears when ts is increased to 5% of the thermal constants
and significant error is induced when ts = 25% of the thermal constant. Clearly,
it is not necessary to update temperatures for each cycle. Since 0.5% of thermal
constants always lead to negligible error on temperature calculation compared
with the cycle accurate temperature calculation, we only update temperatures
and power values after every period of 0.5% of the thermal time constants in the
rest of the paper.

Note in Figure 1, we also present transient temperature with different starting
temperatures. Clearly, different starting temperatures lead to the virtually same
stable temperature without considering the thermal runaway problem which will
be discussed in Section 3.5.

3.4 Temperature Dependent Leakage Power and Maximum Clock

Figure 2 shows the experimental results for total leakage energy consumption at
2.5GHz clock. We assume there is no throttling, i.e., Pa is dissipated in every
cycle. We study two cases: one assumes a fixed temperature, and another consid-
ers energy consumption with temperature dependence in both individual mode
and universal mode. From Figure 2 we can see that by changing the tempera-
ture from 35oC to 110oC, the total leakage energy can be changed by a factor
of 10X. Figure 2 clearly shows that any study regarding leakage energy is not
accurate if the thermal issue is not considered. To consider temperature in meth-
ods in [7, 18], the designers need to assume a fixed temperature appropriate for
the processor and the environment, and then use leakage values at this temper-
ature. How to decide the appropriate temperature is of paramount importance
for accurate energy estimation, and it is an open problem in the literature. Our
work actually presents an approach to select the appropriate temperature.

Faster system clock is always desired in the high-performance processor de-
signs. However, as clock increases, the total energy and system temperature both
increase as well. The maximum temperature and maximum temperature gap con-
straints prevent us from increasing the clock rate indefinitely. In the following
experiments, we assume the maximum allowable temperature is 110oC which is
the maximum temperature supported by current semiconductor packaging tech-
niques, and the maximum temperature gap among components is 40oC. We use
the individual mode to calculate the maximum temperature and the maximum
temperature gap, where the maximum temperature is set as the largest temper-
ature among all components 1. Table 6 shows the maximum system temperature
and the maximum temperature gap without any throttling. We can see that
the maximum clock with thermal constraints is about 1.5GHz when there is no
throttling.

1 The universal mode gives us a lower bound of the maximum temperature.
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Fig. 2. Total Leakage energy consumption without any throttling. We study fixed tem-
peratures of 35oC and 110oC, as well as the case with dynamically updated tempera-
ture. The cases of “ind” and “uni” stand for the individual mode and universal mode,
respectively. The clock is 2.5GHz. Note the results are independent of benchmarks in
the no-throttling cases

Table 6. Maximum temperatures (Max T) and temperature gaps (Max Gap) among
components for different clocks without any throttling. The unit for temperatures is
oC. The ambient temperature is 35oC. Note the results are independent of benchmarks
in the no-throttling cases.

Clock (GHz) 0.5 1 1.5 2 2.5
Max Temperature 35.2 - 36.7 - 40.7 - 48.4 - 61.4 -

36.016 41.5 56.7 87.3 157.2
Max Temperature Gap 0.92 3.97 19.19 46.23 110.44

3.5 Thermal Runaway

The MOSFET thermal runaway problem due to the positive feedback loop be-
tween the on-resistance, temperature and power of MOSFET is widely known
[19]. In this section we will present another thermal runaway problem due to the
interaction between leakage power and temperature. As the component temper-
ature increases, its leakage power increases exponentially. The increase of power
consumption further increases the temperature until the component is in ther-
mal equilibrium with the package’s heat removal ability. If the heat removal is
not adequate, thermal runaway occurs as the temperature and leakage power
interact in a positive feedback loop and both increase to infinity. For transient
temperature T0 and T1 at consecutive time t0 and t1 and corresponding power
P (T0) and P (T1), we define the following two criteria as necessary conditions for
the thermal runaway to occur:

1. T1 > T0, i.e., the temperature should be increasing.
2. the increment of power is larger than the increment of package’s heat removal

ability. The package’s heat removal ability is defined as Po(T ) = T−Ta

Rt
where

Ta and Rt are ambient temperature and thermal resistance, respectively.
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The second criterion can be mathematically formulated as (14) with relation-
ship between T0 and T1 defined by (15):

P (T1) − P (T0) >
T1 − T0

Rt
(14)

T1 − T0 =
P (T0)Rt − (T0 − Ta)

τ
(t1 − t0) (15)

where (15) is derived from (12).
In addition to temperatures, (14) and (15) require knowledge of runtime

power, Rt, τ and Ta. We can simplify the second criterion with Theorem 1.

Theorem 1. Criterion (2) is equivalent to d2T
dt2 > 0, where T is temperature

and t is time.

The detailed proof of Theorem 1 can be found in [20]. �
Compared to (14) and (15), Theorem 1 provides a simpler mechanism with

reduced complexity to detect thermal runaway.
We define the lowest temperature to meet the criteria 1 and 2 as runaway

temperature. As long as the transient temperature reaches the runaway temper-
ature, thermal runaway happens and the transient temperature will increase to
infinity if no appropriate thermal management is applied. Figure 3 plots tran-
sient temperature curves with thermal runaway. 2 It clearly shows that as long as
the transient temperature reaches the runaway temperature, thermal runaway
occurs. Note two starting temperatures, 35oC and 55oC, are chosen in Figure 3.
It is easy to see the starting temperature is independent of transient tempera-
ture behavior and thermal runaway is independent of the starting temperature
because runaway temperature is decided by the power and the package’s heat
removal ability.

We calculate the runaway temperature according to criteria 1 and 2 for differ-
ent clocks. Figure 4 shows the runaway temperatures for clocks from 4.5GHz to
6.5GHz. As clock increases, the runaway temperature decreases since the differ-
ence between power P (T1) and P (T0) increases. For clocks faster than 5.5GHz,
the runaway temperatures of integer units are below our maximum temperature
constraint 110oC. In other words, we can not eliminate the thermal runaway by
simply limiting the operating temperature to be no more than maximum junc-
tion temperature supported by current packaging techniques. We anticipate that
thermal runaway could be a severe problem in the near future as the clock keeps
increasing. Special thermal management schemes are expected to encounter this
problem.

4 Power and Thermal Management with Active Cooling

As we can see from previous discussion, the designer’s desire to increase sys-
tem clock can be severely limited by thermal constraints. Better packaging and

2 Memory units such as caches present similar curves and therefore are not shown.
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Fig. 3. Transient temperature curves one IALU with 5.5GHz clock. By reaching the
runaway temperature, the thermal runaway happens and the transient temperature
finally increases to infinity. The thermal runaway temperature is labeled. No throttling
is applied

Fig. 4. Runaway temperatures for different clocks and different components

active cooling techniques can help to remove the thermal resistance, dissipate
heat more quickly, and enable faster clocks. [4] discusses a few active cooling
techniques such as cooling studs, microbellows cooling and microchannel cool-
ing. [21] introduces a novel active cooling technique by direct water-spray cooling
on electronic devices. In this section, we assume individual mode and consider
three thermal resistance value: (i) Rt = 0.8oC/W for the conventional cooling,
(ii) Rt = 0.05oC/W for water-spray cooling in [21], and (iii) Rt = 0.45oC/W, a
value in between the above two. We call both (ii) and (iii) as active cooling and
study the impact of active cooling.

In our coupled power and thermal management, we turn off the clock sig-
nal for idle components by clock gating [22] and assume clock gating reduces
75% dynamic power. Our experiments show that clock gating can achieve the
maximum clock 2.25GHz with the thermal resistance 0.8oC/W under the same
thermal constraints as those in Section 3. Furthermore, similar to [9], we evenly
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Benchmark: go Benchmark: equake

Fig. 5. Maximum temperature under individual mode with different thermal resistance

Benchmark: go Benchmark: equake

Fig. 6. Maximum temperature gap under individual mode with different thermal re-
sistance

distribute instructions to functional units and eliminate the temperature gaps
between integer units.

4.1 Maximum Clock

Figure 5 plots maximum temperatures for different clocks with different Rt. Ob-
viously by applying active cooling techniques we can effectively increase the max-
imum clock while limiting the system temperature well below the thermal con-
straints. Figure 6 plots the maximum temperature gaps under different cooling
techniques and clocks. By combining results in Figure 5 and 6 with the thermal
constraints applied in Section 3.4, we can increase system clock to up to 5.5GHz
by scaling Vdd up with Rt = 0.05oC/W. Compared to the 2.25GHz maximum
clock with Rt = 0.8oC/W, the active cooling technique with Rt = 0.05oC/W
can increase the maximum clock by the factor of 2.44X under the same thermal
constraints.

4.2 Total Energy

Figure 7 shows the total energy consumption with three different thermal re-
sistances Rt. Clearly the cooling techniques substantially reduce the total en-
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Fig. 7. Total energy consumption under individual mode with different thermal resis-
tances. Note a few bars for clock at 3.5GHz and 4GHz are missing due to thermal
runaway

ergy at the same clock. Compared to Rt of 0.45, Rt of 0.05 reduces the total
energy by up to 18%. From Figure 7 we can also see that the energy reduc-
tion with active cooling techniques increases as clock increases, which means
active cooling techniques is more effective for faster clocks. Note that in Fig-
ure 7 a few bars for Rt = 0.45 and 0.8oC/W are missing due to thermal run-
away. Traditionally the active cooling techniques such as cooling stubs and mi-
crochannel cooling [4] are only applied to mainframes computers. Our result
clearly indicates that they can also be effective and may become necessary for
microprocessors.

5 Conclusions and Discussions

Considering cycle accurate simulation, we have presented dynamic and leakage
power models with clock, supply voltage and temperature scaling, and devel-
oped the coupled thermal and power simulation at the microarchitecture level.
With this simulator, we have shown that the leakage energy can be different by
up to 10X for different temperatures. Hence, microarchitecture level power sim-
ulation is hardly accurate without considering temperature dependent leakage
model. We have studied the thermal runaway problem induced by interdepen-
dence between leakage power and temperature, and show that it could be a
severe problem in the near feature as the runaway temperature can be much
lower than the maximum temperature packages can support. We have studied
the microarchitecture level coupled power and thermal management by novel
active cooling techniques. We show that under the same thermal constraints,
active cooling techniques such as water-spray cooling that reduces thermal re-
sistance from 0.8oC/W for conventional packaging to 0.05oC/W can increase
the maximum clock by a factor of 2.44X. In this paper, we use lumped ther-
mal model without distinguishing packaging components such as heat spreaders
and heatsinks. In fact, we have developed a coupled power and thermal simula-
tor PTscalar, which integrates temperature and voltage scalable leakage model
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with accurate thermal calculation considering three dimensional heat transfer
and the packaging components such as heat spreaders and heatsinks. This tool
is available at http://eda.ee.ucla.edu/PTscalar. We believe that conclusions in
this paper are still valid under the new PTscalar tool.
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Abstract. Energy consumption is becoming a limiting factor in the development
of computer systems for a range of application domains. Since processor perfor-
mance comes with a high power cost, there is increased interest in scaling the CPU
voltage and clock frequency. Dynamic Voltage Scaling (DVS) is the technique for
exploiting hardware capabilities to select an appropriate clock rate and voltage to
meet application requirements at the lowest energy cost. Unfortunately, the power
and performance contributions of other system components, in particular memory,
complicate some of the simple assumptions upon which most DVS algorithms are
based.

We show that there is a positive synergistic effect between DVS and power-
aware memories that can transition into lower power states. This combination can
offer greater energy savings than either technique alone (89% vs. 39% and 54%).
We argue that memory-based criteria—information that is available in commonly
provided hardware counters—are important factors for effective speed-setting in
DVS algorithms and we develop a technique to estimate overall energy consump-
tion based on them.

Keywords: Power-Aware, Memory System, DVS, Control Policy, Synergy.

1 Introduction

Energy consumption is becoming a limiting factor in the development of computer
systems for a range of application domains – from mobile and embedded devices that
depend on batteries to large hosting centers that incur enormous electricity bills. In
recognition that the exponential growth in the performance of processors may come at a
high power cost, there has been considerable interest in scaling the CPU supply voltage
and clock frequency. Thus, if application demand does not currently need the highest
level of processor performance, a lower power design point can be chosen temporarily.
The excitement surrounding voltage/frequency scaling is based on characteristics of
the power/performance tradeoffs of CMOS circuits such that the power consumption
changes linearly with frequency and quadratically with voltage, yielding potential energy
savings for reduced speed/voltage.

Dynamic Voltage Scaling (DVS) is the technique for exploiting this tradeoff whereby
an appropriate clock rate and voltage is determined in response to dynamic application
behavior. This involves two issues: predicting future processing needs of the workload
and setting a speed (and associated voltage) that should satisfy those performance needs

B. Falsafi and T.N. Vijaykumar (Eds.): PACS 2003, LNCS 3164, pp. 164–179, 2004.
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at the lowest energy cost. A number of DVS algorithms have been proposed [28, 24, 23,
13, 9, 7, 26, 8], primarily addressing the prediction issue. Most simulation-based studies
of these algorithms have focussed solely on CPU energy consumption and have ignored
both the power and performance contributions of other system components.

The importance of considering other system components is supported by the few
studies based on actual implementation of DVS algorithms for which overall energy
measurement results have been disappointing compared to simulation results. This has
been attributed to several factors, including inaccuracies in predicting the future compu-
tational requirements of real workloads for those solutions based primarily on observa-
tions of CPU load and the inclusion of other components of the system beyond the CPU,
especially interactions with memory [9, 7, 6, 19, 20, 21, 26]. Thus, the impact of memory
has been considered to be a complicating factor for the straightforward application of
DVS.

In this paper, we identify a positive synergy between voltage/frequency scaling of the
processor and newer memory systems that offer their own power management features.
Based on our simulation results, this paper makes the following contributions:

– We demonstrate that effective power-aware memory policies enhance the overall
impact of DVS by significantly lowering the power cost of memory relative to the
CPU. We discuss what it means to have an “energy-balanced” system design. The
implication of a balanced system using traditional full-power memory chips with
modern low-power, DVS-capable processors is that memory energy may dominate
processor energy such that the overall impact on system energy of employing DVS is
marginal. By better aligning the energy consumption of the processor and memory,
the individual power management innovations of each device can produce greater
benefits.

– We explore how different power-aware memory control policies affect the frequency
setting decision. The synergy between DVS and sophisticated power-aware memory
goes deeper than achieving a lower power design point. Even the simplest memory
power management strategy that powers down the DRAM when the processor be-
comes idle introduces a tradeoff between CPU and memory energy that may negate
the energy saving benefits of reducing the CPU frequency/voltage beyond some
point. Thus, the lowest speed setting of the processor may not deliver the minimal
combined energy use of processor and memory.

– We develop a technique to estimate overall energy consumption using information
available from existing performance counters and show that our estimator is suffi-
cient to capture the general trend in overall energy as CPU frequency changes. Given
the energy tradeoffs inherent with a power-aware memory, we argue that the memory
access behavior of the workload must be understood in order for the DVS system to
predict the energy and performance implications of a particular frequency/voltage
setting.

The remainder of this paper is organized as follows. The next section discusses back-
ground and related work. Section 3 describes our research roadmap and methodology,
and Section 4 examines the interactions between DVS and a traditional high power, low
latency memory design, confirming previous observations in the context of our environ-
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ment. We examine the effects of power-aware memory and develop a memory-based
estimator of overall energy in Section 5. We conclude in Section 6.

2 Background and Related Work

This section summarizes previous work on DVS. We also provide background on power
aware memory.

2.1 Dynamic Voltage Scheduling

Dynamic voltage scheduling has been studied for a wide variety of workloads, including
interactive, soft real time, and hard real time applications. Each of these workloads may
require a different type of DVS algorithm based on the information available about the
tasks, the tolerance for missed deadlines, and the nature of the application behavior. In
general, most DVS algorithms divide total execution time into task periods [25, 13, 27,
11, 17] or regular intervals [28, 24, 9, 8] and attempt to slow down computation to just fill
the period without missing the deadline or carrying work over into the next interval. The
algorithm must predict the processing demands of future periods, usually from observed
past behavior, and use that information to determine the appropriate processor speed and
corresponding voltage. Recent work that falls somewhere in between the hard real time
and the interval-based categories acknowledges the need for more semantic information
about the workload to increase prediction of task execution demands [7, 6, 18, 26, 22].
These studies provide the rationale for our assuming good predictions for a specific
workload.

The speed-setting decision has appeared to be straightforward, given good predic-
tions. However recent experimental work [19, 26, 9, 10] has suggested that memory
effects should be taken into account. For computations that run to completion, Mar-
tin [19, 21] shows there is a lower bound on frequency such that any further slowing
degrades a metric defined as the amount of computation that can be performed per bat-
tery discharge. In recognition of the interaction between CPU and memory, Hsu [10]
proposes a compiling technique to identify program regions and set appropriate CPU
frequencies for them. For periodic computations, Pouwelse [26] alludes to the problem
that the high cost of memory, extended over the whole period, may dominate the over-
all energy consumption of a system such that even effective DVS of the CPU delivers
marginal benefit. We confirm this observation in the context of our target environment
and then focus on memory technology that ameliorates the problem.

2.2 Power-Aware Memory

Previous work on power-aware memory systems [14, 3, 4, 5] introduces another com-
plication such that the power consumption of memory varies significantly depending
on how effectively the system can utilize a set of power states offered by the hardware.
Power-aware memory chips can transition into states which consume less power but
introduce additional latency to transition back into the active state. The lower the power
consumption associated with a particular state, the higher the latency to service a new
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memory request. We adopt a three-state model consisting of active, standby, and pow-
erdown states with power and latency values as shown in Table 1 (based on Infineon
Mobile-RAM [12]). We use 90ns as the average delay of accessing a 32-byte cache
block. Additional delay (denoted by the +) is incurred for clock resynchronization.

Table 1. Mobile-RAM Power State and Transition Values

Power State or Transition Power (mW) Time (ns)
Active Pa = 275 taccess ≈ 90
Standby Ps = 75 -
Powerdown Pp = 1.75 -
Stby → Act - Ts→a = 0
Pdn → Act Pp→a = 138 Tp→a = +7.5

The memory controller can exploit these states by implementing dynamic power
state transition policies that respond to observable memory access patterns. Such policies
often are based on the idle time between runs of accesses (which we refer to as gaps) and
threshold values to trigger transitions. Fig. 1 shows how a policy that transitions among
active, standby, and powerdown modes might work. When the memory has outstanding
requests, the memory chip stays active. Upon the completion of servicing requests, the
chip automatically goes to standby. Note there is no additional latency to transition back
to active from standby. When the idle time, gap, exceeds a threshold (e.g., gapi > Th),
the chip transitions to powerdown and stays there until the start of the next access. For
gaps shorter than the threshold (e.g., gapj < Th), the memory remains in standby.
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   = no access
   = transaction cycle

   of "last" access
* = completion

Active

Standby

*

time

acc t

gap
gap i
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wait

* *
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Fig. 1. Memory Access and Power Control

Operating system page allocation policies that place actively used pages in the min-
imum number of DRAM chips fully exploit the capabilities of power-aware memory.
Previous studies [14] show that using a sequential first-touch virtual to physical page
allocation policy enables unused DRAM chips to enter the powerdown state. Sequential
page allocation, by concentrating all memory references to the minimum number of
DRAM chips, produces significant energy savings over random page allocation.
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3 The Synergy Between DVS and Power-Aware Memory

In this section, we first establish a roadmap for investigating the impact of DVS and
power-aware memory on each other and how they can adapt to be mutually advantageous.
Second we introduce our experimental environment and workload selection.

3.1 Roadmap

The primary goal of our study is to explore power-aware memory’s influence on selecting
the appropriate frequency/voltage to achieve the lowest energy use while satisfying a
known need for a particular level of performance. Therefore, we focus on the factors
that affect the speed-scaling decision in meeting those energy/performance goals. We
also explore the influence of speed-scaling on the decisions of the power-aware memory
controller. Since most DVS algorithms divide total execution time into task periods or
episodes, through this paper all problems are discussed in the time domain of one task
period.

We first consider a base case memory design in which the chips only transition
between active and standby. It is the standard operating mode of most current DRAMs.
We refer to this case as standard memory. A meager step in the direction of power-
awareness is called naive powerdown and represents the policy in which the memory
chips operate normally until task completion at which point they are powered down
through the slack time to the end of the period. Next we explore memory controller
policies that potentially transition a chip to a lower power state when it is otherwise not
servicing request. This is done during the task’s whole period (execution and slack time).
The controller might wait for a threshold amount of time in standby before making the
transition. According to previous research [14, 4, 5] and our experiments, the immediate
transition and sequential page allocation represent “best practice”. We refer to this policy
as immediate powerdown or aggressive.

The other question we need to address is how the DVS algorithm can map the known
performance needs of a task into a frequency range that can meet those needs when
memory policies and behavior may have an effect on that performance. We explore the
variation in execution times, defined as the busy portion of our experimental period,
across the frequency range to understand the factors that the DVS algorithm must take
into account.

3.2 Methodology

We use a modified version of the PowerAnalyzer [1] simulator from the University of
Michigan for our experiments. We modified the simulator to include a detailed Mobile-
RAM memory model including the power state transitions described in Section 2. We
use two memory chips with a total capacity of 64MB. The variable voltage processor
we simulate is based on Intel’s XScale [16]. The voltage and frequency values used
in our evaluations range from 50MHz and 0.65V to 1000MHz and 1.75V. The power
consumption of the CPU at a given frequency/voltage setting is derived in the simulator
from actual processor and cache activity. It varies significantly from approximately
15mW at 0.65V up to 2.2W at 1.75V. The 1-level on-die cache is 32KB with 32B blocks
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Table 2. Variable Voltage Processor Values

Voltage Frequency Power
(V) (MHz) (approximate mW)

0.65 50 15
0.70 100 33
0.80 200 80
1.00 400 222
1.20 600 434
1.40 800 732
1.75 1,000 1,300

and 32-way associativity. On average it takes about 90ns to service a cache miss without
incurring the memory state transition delay.

As shown in Table 1, we use an SDRAM based memory model. In particular, we use
close-page policy during the transition from active to standby. Note data is not lost in
the powerdown state due to the refresh operation. We assume the impact of the refresh
on the gap is minor since the refresh cycle is several orders of magnitude longer than
the gap (ms vs. ns). For completeness, we also used a Rambus-DRAM based four-state
model and obtained qualitatively similar results. Due to the similarity of results and the
popularity of SDRAM based memory platforms (i.e., Mobile-RAM, DDR RAM, etc.),
we only present results for the Mobile-RAM memory model.

We consider multimedia applications as representative workloads for low power
mobile devices and because they appear to be amenable to good predictions of future
processing demands on a per-task basis [26]. We have performed experiments using
four applications from the MediaBench suite [15, 2]: MPEG2dec – an MPEG decoder,
PEGWIT – a public key encryption program, G721 – voice compression, and RASTA –
speech pre-processor. The results from these four benchmarks are remarkably consistent.
Therefore we present results primarily for the MPEG decoder running at 15 frames per
second (a period of 66ms). We use an input file of 3 frames consisting of one I-frame
(intra-coded), one P-frame (predictive) and one B-frame (bidirectional). We present
results for the P-frame, the other frames produce similar results. At this frame rate,
decoding a single frame at our slowest frequency of 50MHz nearly fills the designated
period for all of our experiments. Since the period of our application is set to match
its execution time at 50MHz, we can explore energy consumption over the full range
of available voltages without concern for missed deadlines. One way of viewing this
is that the candidate frequencies which can deliver adequate performance have already
been identified so the question of which voltage delivers the best results for our energy
metrics can be fully explored.

To further explore those memory effects in a controlled fashion, we use a synthetic
benchmark that can model a variety of computation times and cache miss ratios. For
each miss ratio targeted, the synthetic benchmark is configured to just accommodate the
execution of one task at 50MHz while barely meeting its deadline. We choose a 30ms
period and target 3 miss ratios of 2%, 9% and 16%.
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4 DVS and Standard Memory

We begin by taking standard Mobile-RAM as our base. The memory chip stays in active
mode servicing requests and transitions to standby upon the completion of servicing
requests. For our system configuration we have two chips, each consuming 275mW in
the active state and 75mW in the standby state.

We consider the impact of such memory on the effectiveness of DVS for our MPEG
decoding benchmark. We expect memory to dilute the impact of DVS on overall energy
consumption. First for standard Mobile-RAM operated in active and standby states,
memory energy consumption can be calculated as the sum of the energy consumed in ac-
tive and that consumed in standby.Also because the number of accesses and MPEG’s pe-
riod of 66ms are fixed, the memory energy consumption stays roughly constant (9.93mJ)
as processor speed varies.

Table 3 shows that our simulation results match our expectations. This table provides
statistics on CPU power, execution time, average gap for chip 0, memory energy, CPU
energy and total energy for various voltage (frequency) settings. We divide memory and
CPU energy into two portions. The first portion corresponds to the energy consumed
while the task is executing (the busy part of the period). The second portion (labeled
“Residue”) is the energy consumed during the time between the task completion and the
end of the period (i.e., CPU leakage power and DRAM standby for standard memory).

Table 3. DVS with Standard and Naive Powerdown Memory

Standard Naive
CPU CPU Exec Avg CPU CPU Mem Mem Total Mem Total
Freq Pwr Time Gap0 Eng Residue Eng Residue Eng Residue Eng

(MHz) (mW) (ms) (ns) (mJ) (mJ) (mJ) (mJ) (mJ) (mJ) (mJ)
50 16.5 65.18 36446.5 1.08 0.00 9.81 0.12 11.01 0.00 10.89

100 38.3 32.63 18659.8 1.25 0.00 4.93 5.01 11.18 0.12 6.30
200 99.9 16.35 9487.3 1.63 0.01 2.48 7.45 11.58 0.17 4.30
400 311.0 8.22 4786.1 2.55 0.05 1.26 8.67 12.53 0.20 4.07
600 669.3 5.50 3199.3 3.68 0.10 0.86 9.07 13.72 0.21 4.86
800 1210.1 4.15 2413.4 5.02 0.19 0.65 9.28 15.15 0.22 6.09

1000 2354.7 3.34 2201.3 7.86 0.38 0.53 9.40 18.17 0.22 8.99

From the data in Table 3 we see that for this standard memory system, the lowest
energy is achieved by using the lowest CPU voltage setting. Since the memory power is
constant over the entire period, the lowest energy is achieved by minimizing the CPU
energy. However, while the CPU energy changes by a factor of 7, the total energy savings
from lowering voltage is only 39%. These relative savings would be even lower if more
DRAM chips were used (e.g., in a laptop with eight memory chips).

5 DVS and Power-Aware Memory

Power-aware memory offers the opportunity to reduce the energy consumed during
idle times by placing DRAM chips into lower power states. The key problem with the
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traditional memory design of the previous section in the context of DVS is that DRAM
still consumes relatively high power (75mW) during the slack portion of the period.

5.1 Naive Power-Awareness

An alternative to keeping memory powered on all the time is to power down both the
CPU and memory for the time between task completion and the end of the period. It is
this slack time that many DVS algorithms seek to minimize by stretching the execution.
This “naive” implementation enables the DVS scheduler to issue a “command” that
places DRAM into the powerdown state.

Table 3 shows that this naive approach lowers overall energy consumption by dramat-
ically reducing the memory residual energy consumption which represents the energy
consumed by the DRAM in powerdown mode. The memory energy costs (the sum of
the memory energy column and the memory residue for naive) are brought down into
the range of CPU energy. In a sense, these two components are balanced in terms of
energy. The effect of this is to make any power management functions of either the CPU
or memory relatively important. Introducing the powerdown capability in the memory
yields a 51% total energy savings without frequency scaling (i.e., comparing 8.99mJ to
18.17mJ at 1GHz) and a 68% savings coupled with the best frequency.

However, we note a dramatically different effect of DVS on total energy. At 50MHz,
memory remains powered on too long and dominates total energy which equals 10.89mJ.
In contrast, at 1GHz execution time does not decrease enough to offset the substantial
increase in CPU power and total energy is 8.99mJ. The interesting point is that the lowest
total energy consumption (4.07mJ) is achieved at 400MHz. Therefore, total energy has
a u-shape as a function of processor frequency/voltage.

This result conflicts with conventional assumptions used in many DVS algorithms
which have been concerned only with CPU energy. Taking into account the energy used
by memory with even minimal power management capabilities, it is no longer best to
stretch execution to consume the entire period. In fact, the lowest frequency produces
the highest total energy consumption in this case. Instead, the best frequency/voltage for
minimizing energy should be obtained by including memory energy in the decision.

5.2 Dynamic Power-Aware Memory

Although the naive powerdown approach can reduce total energy, it does not exploit the
full capabilities of power-aware memory. The low power state is entered only after task
completion. Next, we investigate the interaction between processor voltage scaling and
sophisticated power-aware memory that utilize low power states while a task is busy.

In contrast to the naive approach described above, this form of power-aware memory
employs memory controller policies that manipulate DRAM power states during the busy
portion of the task period. By default they all place the DRAM chips into powerdown
for the slack portion of the task period. We begin by considering the behavior of the
immediate powerdown (aggressive) policy for various frequency values. We note that
our MPEG application fits entirely in one memory chip, thus the remaining chip can
power down even while the task is busy.

Fig. 2 shows energy versus frequency (a) and execution time versus frequency (b).
The three lines in the energy graph correspond to the total energy, memory energy, and
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processor energy. From this graph, and the data in Table 4, we see that the aggressive
policy has significantly different behavior than either a traditional memory system or
the naive powerdown approach. At high frequency the total energy is comparable to the
naive powerdown policy. However, at low frequency the total energy is much lower.
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Fig. 2. DVS and Power Aware Memory: MPEG Decode–Aggressive Policy

As the frequency increases from 50MHz to 1GHz, the total energy increases from
1.36mJ at 50MHz to 8.53mJ at 1GHz. These results illustrate that when aggressive
memory power management is applied, CPU energy becomes dominant and traditional
DVS begins to work as expected without having to exclude from consideration the
energy consumption of memory. This behavior is explained by examining the processor
and memory energy components. Processor energy steadily increases quadratically with
the increased voltage required for each higher frequency. In contrast, the total memory
energy (busy and slack portion) stabilizes at around 0.28mJ (as explained in Sec 5.4).

From the discussion thus far, we can make several important observations. First, the
naive implementation that powers down memory during slack portions of the period
can produce lower overall energy consumption than a standard memory. However, this

Table 4. DVS and Power Aware Memory: MPEG Decode

CPU CPU Exec Avg Mem CPU CPU Mem Mem Total
Freq Pwr Time Gap0 Pwr Eng Residue Eng Residue Eng

(MHz) (mW) (ms) (ns) (mW) (mJ) (mJ) (mJ) (mJ) (mJ)
50 16.5 65.18 36398.3 4.23 1.08 0.00 0.28 0.00 1.36

100 38.3 32.63 18641.7 4.94 1.25 0.00 0.16 0.12 1.53
200 99.9 16.36 9482.3 6.35 1.63 0.01 0.10 0.17 1.92
400 310.7 8.23 4782.6 9.13 2.56 0.05 0.08 0.20 2.88
600 668.1 5.52 3203.3 11.88 3.69 0.10 0.07 0.21 4.07
800 1207.1 4.16 2496.6 14.52 5.03 0.19 0.06 0.22 5.50

1000 2347.6 3.35 2541.4 16.66 7.87 0.38 0.06 0.22 8.53
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result conflicts with DVS algorithms that assume the lowest frequency will produce the
lowest energy (this assumption only holds for the CPU). Fig. 3 illustrates these results
by showing energy consumption versus frequency. One line is for CPU energy only,
the other lines correspond to various power-aware memory policies and include both
CPU and memory energy. The aggressive power management policy lowers the overall
energy consumption, particularly at the lower frequencies. A conclusion to draw from this
comparison of memory policies is that more effective power-aware memory management
contributes to realizing the potential of DVS.
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Fig. 3. DVS and Memory Controller Policies

The final observation from the above discussion concerns the influence that limita-
tions on execution time can have on energy consumption. For MPEG this was simply the
linear effects of frequency changes versus the quadratic effects on power consumption.
However, other benchmarks have other execution time bottlenecks. In particular, cache
behavior can have a dramatic effect on execution time for some programs. MPEG has a
very low data cache miss ratio; however, several researchers have identified embedded
applications that incur miss ratios from 5% to 15% depending on cache configuration.
Bishop et al [2] show that PEGWIT, the public key encryption application in the Media-
Bench suite, has a miss ratio of 15% in a 16KB 32-way data cache. In our experiments,
PEGWIT has a miss ratio of 2.3% with our 32KB 32-way cache configuration.

5.3 Miss Ratio Effects

To explore the influence of memory latency and cache performance on DVS we con-
sider the effect of changing the workload’s miss ratio on voltage setting. Since it is
hard to vary the miss ratio for a fixed cache configuration with real benchmarks, we
use a synthetic benchmark to create three workloads with the same 30ms period but
different miss ratios: 2%, 9% and 16%. The synthetic benchmark runs 1.0–1.7 million
instructions. We manipulate the instruction number and the ratio of instruction type
(computation/control/memory) to generate different miss ratios while maintaining the
roughly equal execution time. For each workload the 50MHz frequency is sufficient to
complete task execution in the requisite period.
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Our goal is to examine the behavior of each workload as the processor voltage
is scaled. Therefore, we present normalized results to avoid accidental comparisons
between workloads. Fig. 4a) and 4b) show the total energy normalized to the 50MHz
value for the naive and aggressive policy, respectively.
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Fig. 4. Miss Ratio Effects on DVS: Normalized to the 50MHz value

From Fig. 4 we see similar trends for each workload. For the naive policy (Fig. 4a),
energy initially decreases, then increases dramatically as processor power increases.
For the aggressive policy (Fig. 4b), energy increases as frequency increases. We note
that for the aggressive policy, the total energy increases more rapidly for lower miss
ratios. This is because as miss ratio increases memory energy increases, making CPU
less dominant. Also, for a given miss ratio the total memory energy remains constant as
frequency varies, this additive factor makes total energy increase less rapidly for high
miss ratio benchmarks than for low miss ratio ones. For the naive policy, however, we
note that the overall energy energy decreases less rapidly and increases more rapidly for
higher miss ratios. Firstly, because the standby power during execution is greater than
the residue power during task slack time, memory energy does not remain constant but
decreases as frequency increases, forming a trend opposite to CPU energy, thus making
total energy a u-shape. Secondly, the execution time of higher miss ratio workloads are
limited by memory latency sooner, making memory energy decrease less rapidly and
reducing the benefit of increased clock frequencies.

These results indicate that DVS algorithms should consider memory energy con-
sumption when setting voltage levels. Similarly, DVS algorithms should also consider
memory’s effect on performance when determining which frequencies meet the dead-
lines. The challenge is to develop a method for determining what voltage/frequency level
should be used to minimize overall energy and meet deadlines. The following section
outlines our approach for meeting this challenge.

5.4 Toward Memory-Aware DVS

In this section, we show how to use available information to calculate component energy
(CPU and memory) and total energy for each processor frequency level.
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Estimating Energy. To estimate processor energy consumption, we multiply the esti-
mated execution time by the estimated power consumption. We use the range of CPU
power values given by [16] and represent the power associated with frequency f by
Pcpu(f). To calculate the execution time, we divide it into 3 parts according to the power
state of the memory: Tact, TL→act and TL. We use L to denote one of the low power
states. It can be standby for naive power aware memory or powerdown for aggressive
power aware memory. Tact is the time spent in the active power state where accesses
are serviced. TL→act is the extra time when memory is making transitions from the low
power state to the active state. Fig. 1 shows each transition is followed by an active
duration which services at least one access. To compute these two time values, we need
to know how many times the memory makes a power transition and, for each transition,
how many accesses (cache misses) are serviced. We assume only one access is serviced
each time and hence the number of power transitions equals the number of cache misses.
We claim it is a reasonable approximation for our inorder processor model. Furthermore,
our simulation results agree with this approximation. TL is the sum of all durations when
the CPU does not generate cache misses and the memory remains in the low power state.
So each instruction, except those that trigger a cache miss, contributes a cycle to TL.

From the above discussion and assuming a base CPI of one, we can calculate the
execution time, Texec, as follows:

Tact = taccessNmisses (1)

TL→act = tL→actNmisses (2)

TL =
1
f

(Ninsts − Nmisses) (3)

Texec = Tact + TL→act + TL (4)

The residual time is easily computed by subtracting our estimated execution time
from the provided period (Tresidual = Tperiod − Texec). Therefore the CPU, memory
and total energy can be calculated as follows:

Ecpu = TexecPcpu(f) + TresiduePleakage (5)

Emem = TactPact + TLPL + TL→actPL→act + TresidualPpowerdown (6)

Etotal = Ecpu + Emem (7)

Note all parameters required to solve the above equations are either available from
the hardware specifications (taccess, tL→act, Pact, PL, PL→act, Ppowerdown, Pcpu(f),
Pleakage) or easily obtained with existing performance counters on most modern pro-
cessors (Nmisses, Ninsts, f ).

Evaluation. We use both synthetic and real workloads to evaluate our energy estimates.
Fig. 5 shows the measured energy (Simulation) and our predicted energy (Predicted)
versus clock frequency for PEGWIT.

The first observation is that our prediction of each component’s energy and total
energy matches the general shape of the simulation results. Our model works very
well on memory energy prediction. We note that the errors in CPU and total energy
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Fig. 5. Energy Prediction – Inorder Processor

estimation are primarily due to the fact that the fixed CPU power values from [16]
can not accurately reflect the actual power consumption obtained from the simulation.
Nonetheless, the estimates appear to be sufficient for a DVS algorithm to choose an
appropriate frequency.

We also examined how our model and simulation compare for an out-of-order pro-
cessor, and we get very similar results to the inorder processor. Since the out-of-order
processor tends to generate multiple outstanding cache misses, equations (1,2,4) gener-
ally overpredict the execution time and thus lead to a slightly higher energy estimation
for the out-of-order processor than for an inorder processor, leaving a side-effect of being
more accurate (as illustrated in Fig. 6).

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000

E
ne

rg
y 

(m
J)

CPU Frequency (MHz)

Total Energy (Predicted)
Total Energy (Simulated)
CPU Energy (Predicted)

CPU Energy (Simulated)
Mem Energy (Predicted)

Mem Energy (Simulated)

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000

E
ne

rg
y 

(m
J)

CPU Frequency (MHz)

Total Energy (Predicted)
Total Energy (Simulated)
CPU Energy (Predicted)

CPU Energy (Simulated)
Mem Energy (Predicted)

Mem Energy (Simulated)

a) Naive b) Aggressive
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6 Summary and Conclusions

This work shows there is a synergistic effect between dynamic voltage scaling (DVS) of
the processor and power-aware memory control. Our simulation results for four appli-
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cations from the MediaBench benchmark suite show that combining DVS with power-
aware memory achieves greater energy savings than either technique in isolation – a
consistent 89% savings compared to our standard base case. By contrast, the energy
savings from DVS alone with standard memory are only 39%. Using a power-aware
memory policy that transitions into powerdown mode, but without exploiting the DVS
capabilities of the processor, yields a total energy saving of 54%. The interaction between
these two technologies has the greatest impact.

Traditional DVS works under the assumption that CPU power dominates. Unfortu-
nately, in a common mobile system with standard memory and low power processor,
memory power is comparable to CPU power, and thus dilutes the benefit from DVS.
For applications with predictable periodicity, naive power management can be used to
reduce task slack time energy. However, the memory energy scales with frequency and
voltage differently from the CPU energy. Therefore the tradeoff between memory and
processor energy has to be considered when setting the correct speed to minimize total
energy. Aggressive power management further reduces memory energy so that CPU
becomes dominant again. It makes the benefit from DVS more pronounced and the best
speed setting becomes compatible with DVS algorithms.

Recognizing the tradeoff between memory and processor power consumption and
memory’s influence on execution time, we propose a technique to estimate execution
time and the total energy consumption of a given task for a given power-aware memory
policy. Our approach requires information that is easily obtained with existing perfor-
mance counters on many modern processors. We show that our execution time and
energy estimates are sufficient to capture the tradeoff between memory and processor
energy consumption, and can be used by a DVS algorithm to select an appropriate
voltage/frequency setting.

As a natural extension to the above work, we also explored the impact of DVS on the
memory access behavior and hence the selection of memory control policies. Due to the
space limitation, we only give our conclusion here. If the DVS algorithm has to increase
the frequency (i.e. to meet a deadline), the memory controller policy should adapt to
the change of access behavior to gain maximum benefit (i.e. switch from an aggressive
transition policy to a moderate one due to shortened gaps).
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Abstract. As technology scales and processor speeds improve, power has become
a first-order design constraint in all aspects of processor design. In this paper,
we explore the use of criticality metrics to reduce dynamic and leakage energy
within data caches. We leverage the ability to predict whether an access is in the
application’s critical path to partition the accesses into multiple streams. Accesses
in the critical path are serviced by a high-performance (hot) cache bank. Accesses
not in the critical path are serviced by a lower energy (and lower performance
(cold)) cache bank. The resulting organization is a physically banked cache with
different levels of energy consumption and performance in each bank. Our results
demonstrate that such a classification of instructions and data across two streams
can be achieved with high accuracy. Each additional cycle in the cold cache access
time slows performance down by only 0.8%. However, such a partition can increase
contention for cache banks and entail non-negligible hardware overhead. While
prior research has effectively employed criticality metrics to reduce power in
arithmetic units, our analysis shows that the success of these techniques are limited
when applied to data caches.

1 Introduction

Technology improvements resulting in increased chip density have forced power and
energy consumption to be first-order design constraints in all aspects of processor de-
sign. Furthermore, in current processors a large fraction of chip area is dedicated to
cache/memory structures and with each technology generation this fraction continues
to grow. As a result, caches account for a significant fraction of overall chip energy. For
example, in the Alpha 21264 [10], caches account for 16% of energy consumed.

In this work we focus on reducing both dynamic and leakage energy of L1 data
caches by exploiting information on instruction criticality. Instructions of a program have
data, control, and resource dependences among them. Chains of dependent instructions
that determine a program’s execution time are referred to as the critical paths. In other
words, instructions that can be delayed for one or more cycles without affecting program
completion time are considered to not be on the critical path. Such instructions, referred to
as non-critical instructions, afford some degree of latency tolerance. By identifying these
instructions consistently and correctly, they are directed to access a statically designed
low energy and lower performance (cold) cache bank. Critical instructions are directed

B. Falsafi and T.N. Vijaykumar (Eds.): PACS 2003, LNCS 3164, pp. 180–195, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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toward a (hot) cache bank designed for high performance. The resulting organization is
a physically banked cache with different levels of energy consumption and performance
in each bank.

The challenges in such an implementation are two-fold: (i) determining the bank in
which to place a given piece of data, and (ii) partitioning the instruction stream into a
critical and a non-critical stream. Our analysis of the data and instruction stream of a
range of applications shows that the criticality of both instructions and data shows high
consistency. Based on this analysis, we steer instructions to cache banks based on the
instruction’s program counter, and place data in these banks based on the percentage of
critical instructions accessing the data line.

If the cold cache is designed to be highly energy-efficient (consuming 20% of the
dynamic and leakage energy of the hot cache), we observe L1 data cache energy savings
of 37%. Our results indicate that critical instruction (and data) prediction is reliable
enough that performance degrades by only 0.8% for each additional cycle in the cold
cache access time. This allows us to employ power-saving techniques within the cold
cache, that might have dramatically degraded performance if employed in a conventional
cache. However, the re-organization of data across the hot and cold banks increases
contention and this degrades performance by 2.7% compared to a conventional word-
interleaved cache. Hence, for the hot-and-cold organization to be effective, the latency
cost of employing the power-saving techniques in the conventional cache has to be
prohibitive. While prior work has effectively employed criticality metrics to design low-
power arithmetic units [21], our results show that criticality-directed low power designs
are not highly effective in L1 caches of high-performance processors.

In Section 2, we elaborate on techniques that have been proposed to address energy
consumption in caches, and motivate the use of statically designed caches. In Section 3,
we analyze the consistency of a program’s instructions and data in terms of criticality to
determine if their behavior lends itself to criticality-based classification. Section 4 de-
scribes our cache implementation. We present its performance and energy characteristics
in Section 5. Finally, we conclude in Section 6.

2 Energy-Delay Trade-Offs in SRAM Design

A number of circuit-level and architectural techniques can be employed to reduce dy-
namic and leakage energy in caches.At the circuit level, as process technology improves,
careful transistor sizing can be used to reduce overall capacitance, and hence dynamic
energy. Since dynamic energy is roughly proportional to the square of Vdd, lowering Vdd

can help reduce dynamic energy. Simultaneous to the above circuit-level techniques,
architectural techniques such as banking, serial tag and data access, and way predic-
tion [19], help lower dynamic energy by reducing the number of transistors switched on
each access. This comes at the cost of increased latency and/or complexity. For example,
delay is roughly inversely proportional to Vdd.

Several techniques have been proposed to reduce leakage energy while minimizing
performance loss [3, 9, 11, 12, 15, 18, 28]. For example, higher Vt devices help reduce
leakage energy [18]. However, when applied statically to the entire cache, especially
the L1 cache, these techniques increase access latency. Since an L1 cache access time
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must typically match processor speed, an increase in access latency by even a cycle can
have a significant impact on performance [11]. Circuit-level techniques that use dynamic
deactivation to switch to a low leakage mode increase manufacturing cost and/or affect
latency and energy consumption of the fast mode (either in steady-state or due to the
transition). Our goal in this paper is to examine ways by which static low-power designs
of caches might be exploited using architectural techniques to reduce both leakage and
dynamic energy consumption while minimally affecting performance.

3 Instruction and Data Classification

From the discussion in the previous section, it is clear that the cost of decreasing energy
consumption of L1 caches is an increase in average access time of the cache. One way
to mitigate this performance loss is to overlap the extra access time penalty incurred
due to the energy saving techniques with the execution of other instructions in the
program. Such overlapping is only possible if the corresponding load instruction is not
on the application critical path, where the critical path is defined by the longest chain
of dependent instructions whose execution determines application completion time. We
propose a technique to identify such non-critical instructions and steer data accessed by
these instructions to a low energy and lower performance cold bank, while critical loads
are still served from a fast, hot bank.

3.1 Criticality Metrics

Recent work [7, 8, 24, 25, 26] has examined the detection of instruction (and/or data)
criticality. Srinivasan and Lebeck [25] used a simulator with roll-back capabilities to
accurately classify each instruction as critical or not. More recent studies have proposed
heuristics that approximate the above detailed classification method to allow feasible
implementations. Srinivasan et al. [24] and Fisk and Bahar [8] determine that load
instructions are critical if they incur a cache miss, or lead to a mispredicted branch, or
slow down the issue rate while waiting for data to arrive. Fields et al. [7] classify an
instruction as critical if it is part of a chain of successive wake-up events. Tune et al. [26]
propose a number of heuristics that predict whether instructions are critical or not. For
example, their analysis shows that treating the oldest instructions in the issue queue as
critical performs as well as other more complicated metrics that use data dependence
chain information to determine criticality.

Our analysis also confirms that using the position of the instruction in the issue queue
to determine its criticality performs comparably to techniques that use more complicated
metrics. Using this Oldest-N technique, an instruction is deemed critical if it is among
the oldest N instructions in the issue queue at issue time, where N is a pre-defined
parameter. Since ready instructions that are further downstream (not among the oldest
N ) have a greater degree of latency tolerance, it is fair to mark them as non-critical. Note
that such a heuristic tends to identify instructions along mispredicted paths as being non-
critical, because mispredicted instructions are usually not the oldest instructions in the
issue queue. The following advantages motivate the use of Oldest-N in our design: (i)
No hardware table is required to predict instructions as critical because the position in
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the issue queue at the time of issue is sufficient to determine criticality. (ii) The ratio of
critical to non-critical instructions can be tuned by varying N .

3.2 Classifying Load Instructions

This subsection attempts to quantify the consistency of criticality behavior of load in-
structions with the Oldest-N metric. Similar results were seen when employing other
complex criticality metrics. In our analysis, N = 5 allows the most accurate classifica-
tion of instructions as critical or not. Figure 1 (a) shows a histogram of the percentage
of loads that show the same criticality behavior as their last dynamic invocation.

In Figure 1(a), we observe that for most of the applications, over 85% of dynamic
loads have the same criticality as their previous invocation. Only gap (80%) and twolf
(84%) have a slightly lower degree of consistency. On average, over 88% of loads show
consistent criticality behavior. The high consistency exhibited by loads motivates the
use of hardware predictors to partition accesses into critical and non-critical streams.
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Fig. 1. (a) Consistency of load criticality. (b) Percentage of critical accesses to a data cache block
– the figure is a histogram showing the percentage of data blocks that had a particular fraction of
accesses from critical loads

3.3 Classifying Data Blocks

While the results in the previous subsection reveal that instructions can be statically
categorized as critical or non-critical, the same behavior need not hold true for accessed
data blocks. A single cache line is accessed by a number of loads and stores, not all of
which may have the same criticality behavior. In order to be able to place data in either
the hot or cold cache bank, we have to determine if the accesses to cache blocks are
dominated by either critical or non-critical loads/stores. Figure 1(b) shows a histogram
of the distribution of data cache blocks based on the percentage of accesses to each block
that were attributable to critical loads. This is computed by averaging the histograms
for each individual program. From Figure 1(b), we observe that nearly 46% of data
cache blocks have 90 to 100% of their accesses from critical loads. Similarly, 16% of
data blocks have only 0 to 10% of their accesses from critical loads (i.e., over 90% of
their accesses are due to non-critical memory operations). These results indicate that
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data blocks are also often exclusively critical or non-critical. However, there is a non-
trivial percentage of blocks that are accessed equally by critical and non-critical loads,
and steering such data blocks to one of the cache banks will impact performance and/or
energy. When using smaller cache line sizes, blocks are more strongly polarized as being
critical or non-critical. Although smaller lines reduce interference from access behaviors
of other words in a line, there still remain a number of words that are accessed equally
by critical and non-critical loads/stores.

4 The Hot-and-Cold Banked Cache

Proposed Organization. Motivated by the results in Section 3, we propose a new or-
ganization for the L1 data cache that is composed of multiple cache banks, with some
banks being energy-efficient and the rest being designed for the fastest possible access
time. Figure 2 shows a high-level block diagram of the proposed hot-and-cold L1 data
cache. The L1 data cache is split into two banks – a “hot” bank and a “cold” bank. The
hot bank is slated to contain data blocks that are marked critical, while the cold bank is
slated to contain data blocks that are marked non-critical.

The hot cache provides the fastest possible access time, and the cold cache services
requests in an energy-efficient manner while incurring a longer latency. Since the cold
bank is similar to other conventional cache banks, it could use any proposed architectural
energy-saving techniques like serial tag-data lookup, or way prediction [19] to reduce
energy per access. In addition, the cold cache can be designed with more energy-efficient
circuits using transistor sizing (as discussed in section 2) to reduce overall capacitance,
high Vt for reduced leakage, or gated-ground SRAM cells [3].

Data Placement using Placement Predictor. Every time a cache block is fetched from
the L2 cache, it is placed into one of the hot or cold banks based on the history of
accesses to that block when it last resided in the L1 cache. For this purpose, we track
the fraction of accesses to each cache block due to critical loads/stores. As explained
in the last section, we use the Oldest-N metric to determine whether a load instruction
is critical or not. For each data block in the L1 cache we maintain an n-bit up/down
counter, initialized to 2n−1 to track the number of accesses to that block due to critical
memory access instructions. The counter is incremented for every critical access to the
block and decremented for every non-critical access.A 4-bit counter was chosen to avoid
miscategorization of a cache line as either critical or non-critical.

When a data block is being replaced from the L1 cache, we mark the corresponding
line as “critical” if the counter is greater than or equal to 2n−1. Else, it is marked “non-
critical”. To save this information, we could use 1 extra bit (the “criticality” bit) per line
in the L2 cache directory. Subsequently, when the data block is brought back into the
L1 cache from L2, it is placed in the hot cache if the criticality bit of that line in the L2
cache is set to 1; otherwise, it is placed in the cold cache. The criticality bit of all lines
in L2 are initialized to 1. As the criticality bit in an L2 cache line stores the most recent
classification of the cache block, the placement of blocks in the hot and cold cache adapts
dynamically depending on the change in access patterns to a cache block. Moreover,
updates to the criticality bit are not in the critical path because they are performed only
when a block is replaced from the L1 cache.
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Fig. 2. The Energy-Aware Hot-and-Cold Banked Cache

In spite of the low overhead for storing this 1 bit in the L2 cache, it is desirable to
eliminate it for the following reasons: (i) The bit has to be communicated to L2 even if the
block being replaced is not dirty. (ii) Despite having a bit per L2 cache line, the bit is lost
if the cache block is evicted from L2. Hence, we explored the use of a separate structure
(the placement predictor) that stores these bits for a subset of cache blocks. Every time
a block is evicted from L1, the block address is used to index into this structure and
update the classification of that block using the criticality information for the line. The
bit is set to 1 if the line is critical, and to 0 if the line is non-critical. Every time a block
is brought in from L2, the structure is indexed to determine the classification and place
data in either the hot or the cold bank. We found that a structure of size as small as 4K
bits was enough to accurately classify blocks as being critical and non-critical. Using a
separate structure avoids having the size of the table grow in proportion to the L2.

Load/Store Steering Using Bank Predictor. The above mechanism partitions data
blocks across two streams. Next, we have to partition memory operations and steer
them to the appropriate cache bank. For each load/store instruction, we use a predictor
indexed by the instruction’s PC to steer the access to the bank that contains the data
being accessed. Note that this steering does not take into account the criticality nature
of the instruction itself – because a critical load can access a block that is classified as
non-critical and a non-critical instruction can access a block that is classified as critical.

We maintain a hardware-based dynamically updated bank predictor that keeps track
of the bank that was last accessed by a particular instruction. We experimentally observed
that a bank predictor of size 4Kx1 bit was sufficient to steer memory accesses with an
average accuracy of greater than 90%. Moreover, a PC-based predictor to steer accesses
to hot and cold banks allows the steering to be done as soon as a load/store instruction
is decoded. Hence, selecting between banks does not incur any additional cycle time
penalty. The predictor contains a bit for each entry. If the value of the bit is one, the
access is steered to the hot cache, and if the value is zero, the access is steered to the
cold cache. The counter value is set to one if the data is found in the hot cache and reset
to 0 if it is found in the cold cache.

During every access, tags for both banks are accessed simultaneously. This allows
us to detect a steering misprediction. For each such misprediction, we incur additional
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performance and energy penalty for probing both the hot and the cold cache array. This
need not introduce additional complexities in the issue logic as the operation is similar to
the load replay operation on a cache miss. The variable latency across different loads can
also be handled – at the time of issue, the bank being accessed (and hence, its latency)
is known, and wake-up operations can accordingly be scheduled.

Related Work. The hot-and-cold cache has a read bandwidth of two with a single read
port per bank because in any given cycle one hot and one cold word can be accessed.
Thus, it behaves like a two-banked cache in which the bank steering is done based on
the criticality nature of cache blocks. We therefore compare the performance of the hot-
and-cold cache with a word-interleaved two-banked cache. Rivers et al. [14] show that
partitioning the cache in a word-interleaved manner minimizes bank conflicts because
most applications have an even distribution of accesses to odd and even words.

Recent work by Abella and Gonzalez [2] examines a split cache organization with
a fast and slow cache. Contrary to our proposal, their policies for data placement and
instruction steering are both based on the criticality nature of the accessing instruction.
There is also considerable performance-centric related work that has looked at cache
partitioning. For example, the MRU [23], Victim [13], NTS [20], and Assist [16] caches,
and the StackValue File [17] study various ways to partition the cache to improve average
cache access latency. The focus of our work is quite different; the main motivation for
the design choices we explored in this paper is to provide faster access to a subset of
cache lines while saving energy when accessing the rest of the lines.

5 Results

5.1 Methodology

To evaluate our design, we use a simulator based on Simplescalar-3.0 [4] for the Al-
pha AXP instruction set. The register update unit (RUU) is decomposed into integer
and floating point issue queues, physical register files, and reorder buffer (ROB). The
memory hierarchy is modeled in detail, including word-interleaved access, bus and port
contention, and writeback buffers. The important simulation parameters are summarized
in Table 1.

Table 1. Simplescalar Simulation Parameters

Fetch queue size 16 Issue queue size 20 (int and fp, each)
Branch predictor comb. of bimodal and 2-level Register file size 80 (int and fp, each)

Bimodal pred. size 2048 Re-order Buffer 80
Level 1 predictor 1024 entries, history 10 Int ALUs/mult-div 4/2
Level 2 predictor 4096 entries FP ALUs/mult-div 4/2

BTB size 2048 sets, 2-way L1 I and D cache 16KB 2-way, 2 cycles
Branch mpred penalty at least 12 cycles L2 unified cache 2MB 8-way, 16 cycles

Fetch width 4 TLB 128 entries, 8KB page
Dispatch/commit 4 Memory latency 90 cycles
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We estimated power for different cache organizations using CACTI-3.0 [22] at 0.1μm
technology. CACTI uses an analytical model to estimate delay and power for tag and data
paths. We obtained an energy per read access of 0.67 nJ for a two-banked, 16KB, 2-way
associative L1 cache with a 32 byte line size. Of this,0.56 nJ was due to bit-lines and sense
amplifiers. For write accesses the cache essentially behaves like a 1-way cache, and 50%
of bit-line and sense amplifier energy can be eliminated. Hence, energy per write access
is 0.39 nJ (0.67 − 0.5 ∗ 0.56). We also take into account the energy cost of reading
and writing entire cache lines during writeback and fetch. Note that our evaluations
only show energy consumed within the L1 data cache and not overall processor energy.
The contribution of the data cache to total processor power can be as little as 5% in a
high-performance processor and as much as 50% in an embedded processor. In future
technologies, increased leakage energy is likely to increase the contribution of the L1D
to total chip power. Given the wide range of possible values, we restrict ourselves to
presenting the savings in data cache energy only.

We analyzed additional energy expended due to the hardware counters and predictors
used in the hot-and-cold cache. With CACTI, we derived energy per access of the tag
array for the L1 and L2 cache to be 0.055 nJ and 0.162 nJ, respectively. Based on
this, we derived the energy per access due to the 4-bit counter used in the L1 tag array
(for tracking critical/non-critical accesses of a cache block) to be 0.004 nJ (which is
only an additional 1% energy per access for the L1 cache). Similarly, we estimated the
additional energy per access to the placement predictor to be 0.5 pJ, which is a negligible
fraction per L2 access (since the predictor is updated and accessed only on an L1 miss
or eviction). The energy for the bank predictor used for steering memory accesses to the
hot or cold bank is 0.5 pJ per access (same size as the placement predictor), which is
again a negligible fraction of L1 data cache energy per access.

We simulated 10 programs from SPEC2k-Int1 with reference input datasets. The
simulation was fast-forwarded 2 billion instructions, another 1 million instructions were
used to warm up processor state, and the next 500M instructions were simulated in detail.
Table 2 presents the benchmarks with their base IPC and L1 and L2 miss rates.

5.2 Comparison of Performance

Figure 3 compares performance of the hot-and-cold cache to the baseline L1 data cache,
which is dual banked and word interleaved. The first bar presents IPC of the baseline L1
data cache. The second bar shows IPC for the hot-and-cold cache with data allocation to
banks based on criticality, assuming perfect steering (no bank prediction) of loads/stores
to banks. The criticality metric used is Oldest-N, where N is fixed at 7.

By using the hot-and-cold organization, allocation of data across the two banks is
different. As a result, overall IPC is reduced by about 1.8%, which is a result of two
factors: (i) There is an imbalance in the number of accesses to each bank while using
the hot-and-cold cache. Some applications (bzip, gzip, twolf) have many more critical
accesses, while others (gcc, vortex) have many more non-critical accesses. This results in
excess contention for the limited cache ports as compared to the word-interleaved banked

1 Perlbmk did not run with our simulator and mcf is too memory bound for its performance to be
affected by changes to the CPU and cache.
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Table 2. Base Statistics for Benchmarks Used

Benchmark Base L1 L2 Benchmark Base L1 L2
IPC miss miss IPC miss miss

rate rate rate rate
bzip 1.42 2.96 5.22 gzip 1.37 2.84 1.37

crafty 1.32 4.37 0.16 parser 1.20 4.77 4.83
eon 1.60 0.90 0.04 twolf 1.09 9.51 0.11
gap 1.68 0.62 17.12 vortex 1.14 2.71 0.92
gcc 1.18 9.98 0.24 vpr 1.02 4.38 10.65
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Fig. 3. Performance of Hot-and-Cold Cache Relative to Baseline Word-Interleaved

cache, in which, accesses to each bank are roughly equal. (ii) Accesses to a critical or
non-critical cache are more bursty. When an instruction completes and wakes up its
dependents, there is a high probability that the dependents would either all be critical or
all be non-critical. Since an entire cache line resides in one bank, spatial and temporal
locality also dictate that the same bank would be repeatedly accessed. We verified this by
examining the number of accesses to each bank in a 10-cycle window. Figure 4 shows a
histogram indicating the percentage of such windows that encountered a particular ratio
of accesses to the two banks (using an Oldest-7 threshold for the hot-and-cold cache).
For the word-interleaved cache, an average of 36% of all time windows had roughly the
same number of accesses to each bank. For the hot-and-cold cache, this number was only
19%, while the number of windows that had exclusively either critical or non-critical
accesses was as high as 26%. This shows that reorganizing data in the banks based on
criticality results in an increase in data cache port contention.

While we cannot completely eliminate the bursty nature of critical and non-critical
accesses since this is inherent to program behavior, we used the following method to im-
prove the distribution of accesses to the banks. By varying the parameter N , we changed
the number of critical accesses and thus, the allocation of blocks to the two banks. We
found that keeping the number of accesses to each bank roughly equal resulted in the
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least amount of port contention. This is achieved at run-time with a simple mechanism
that uses statistics over a past interval to determine the value of N for the next interval.
We used 10M instruction intervals and discarded statistics from the first half of an in-
terval. Over the latter half of the interval, we counted the number of accesses to each
bank. In terms of hardware, this requires two counters to keep track of the number of
accesses to the two banks as well as a comparison triggered every 10M instructions. If
the percentage of accesses to the hot bank was less than 45%, we increased the value
of N so as to classify more loads as critical. Likewise, if the percentage of accesses to
the hot bank was more than 55%, we decreased N . The statistics from the first half of
each 10M instruction interval are discarded to allow enough cache block evictions and
fetches that the parameter change is reflected in statistics collected for the latter half.
Striving for a 50% share of critical accesses minimizes port contention, improving IPC
by 1%. However, we found that keeping the share of critical accesses to 60% was better
at minimizing IPC loss from a slower cold cache. The third bar in Figure 3 represents
such an organization and is only marginally better than a fixed value of N = 7. How-
ever, since it classifies more instructions as critical, it sees a much lower performance
degradation when cold cache latency is increased. Note that this represents a model
where loads and stores are perfectly steered to the bank that caches the data. Gcc is an
example of a program that is highly constrained by cache port contention. Using a value
of N = 7 causes a high imbalance in accesses to each bank and degrades performance.
As a result, the dynamic tuning of N is very important in this case to minimize additional
port contention stalls causes by the hot-and-cold cache organization.

The fourth bar in the figure shows a model that uses the bank predictor. An incorrect
prediction results in a probe of both the banks, resulting in a higher latency and greater
port contention. Due to this, overall IPC goes down by an additional 1%. We found that
the mispredict rate was 9.5% on average, thus confirming our earlier hypothesis about
the easy predictability of the nature of blocks accessed by loads and stores.

Table 3 shows various statistics that help us explain the changes in performance.
The table shows that the hot-and-cold cache organization has to handle more accesses
and this increase is caused by mispredictions while steering loads and stores. We also
note that the distribution of accesses to odd and even banks in the base case is fairly
even (except in gcc). By tuning the value of N , the distribution of accesses to hot and
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Table 3. Data access statistics for the base word-interleaved cache and the hot-and-cold using a
dynamic Oldest-N threshold

benchmark base case bnk1:bnk2 port conflict H-and-C Hot:Cold port conflict steering
accesses accesses stalls accesses accesses stalls mpreds

bzip 191M 60:40 41.6M 198M 62:38 103.6M 7.1M
crafty 194M 58:42 59.1M 216M 59:41 127.1M 21.1M
eon 232M 56:44 76.8M 263M 59:41 231.3M 33.0M
gap 183M 57:43 51.6M 213M 60:40 106.0M 30.2M
gcc 345M 76:24 1754M 354M 53:47 1894M 8.7M
gzip 177M 62:38 80.0M 185M 58:42 117.8M 7.9M

parser 175M 62:38 62.6M 187M 59:41 106.1M 12.3M
twolf 173M 58:42 74.1M 194M 62:38 94.4M 24.6M
vortex 218M 63:37 176.4M 241M 36:64 267.7M 24.3M

vpr 210M 51:49 59.1M 238M 58:42 134.5M 29.8M

cold banks is adjusted to approximately be in the ratio 60:40. The notable exception is
vortex, where most instructions issue from the last issue queue entry and are classified
as non-critical. Because of the increased number of accesses to the hot-and-cold cache
and the inherent bursty nature of these accesses (Fig 4), we see that the number of
stall cycles due to port contention is much higher. On average, the hot-and-cold cache
has twice as many stall cycles as the word-interleaved base case (In gcc, the program is
already highly constrained by port contention, so the increase caused by the hot-and-cold
re-organization does not result in a doubling of the number of stall cycles.).

Finally, the fifth and sixth bars show the effect of increasing the cold cache latency
to four and six cycles, respectively. The seventh and eighth bars show IPCs for a word-
interleaved cache where all accesses take four and six cycles, respectively. In spite of
slowing down as many as 45% of all memory operations, increasing cache latency from
2 to 4 cycles only results in a 1.6% IPC loss. Uniformly increasing the latency of every
access to 4 cycles in the base case results in an IPC penalty of 5.7%. Thus, the use of the
criticality metric helps restrict the IPC penalty of a slower cache access time. However,
owing to the penalty from increased port contention and mis-steers, the hot-and-cold
cache with the 4-cycle cold cache latency does only marginally better than the 4-cycle
word-interleaved cache. The value of the proposed organization is seen when the energy-
saving techniques threaten to slow the cache to a latency of six cycles. The hot-and-cold
organization with the 6-cycle cold cache latency outperforms the 6-cycle base case by
an overall 5.7%, demonstrating its ability to tolerate the additional latency.

As we demonstrated in Figure 1, there are a number of blocks that are not easily
classifiable as critical or non-critical. This causes some amount of inefficiency in the
system – when critical loads access non-critical blocks, performance is lost, and when
non-critical operations access critical blocks, they unnecessarily consume additional
energy. We noticed that 26% of all memory operations were of this kind. This inefficiency
cannot be microarchitecturally eliminated as it is an artifact of the program that the same
data is accessed by different kinds of loads and stores.
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Finally, it could be argued that a word-interleaved cache like the base case with half
the total capacity could match the energy consumption of the hot-and-cold cache if the
base capacity is not fully utilized. We make the assumption (which we verified for our
base case design parameters) that the capacity of the base case is chosen to work well
across most programs and that halving its capacity would severely impact a number of
programs, rendering such an organization unattractive.

5.3 Comparison of Energy

Energy-Delay Trade-Offs. Our proposal does not make any assumption on the particu-
lar energy-saving techniques that can be employed for the cold bank. Since the cold bank
is like any other conventional cache bank, it could use any of the already proposed ar-
chitecture or circuit level power-saving techniques. Hence, our results are parameterized
across multiple access time and energy consumption characteristics.

In order to provide a more detailed understanding of energy-delay trade-offs possible
through circuit-level tuning, we performed circuit simulations using a typical SRAM
cross-section from the predecoder to the wordline driver in 0.13μ CMOS technology.
The predecoder consists of 3-to-8 NORs and the decoder is an n-input NAND, where n is
the number of 3-to-8 predecode blocks. Finally, the wordline drivers consist of inverters
that drive the load, which includes all associated wires and SRAM cells. We used a
formal static tuning tool, EinsTuner [5], to vary total device width. EinsTuner [27, 5] is
built on top of a static transistor-level timing tool (EinsTLT) that combines a fast event-
driven simulator (SPECS) with a timing tool (Einstimer). The SPECS simulator provides
timing information such as delay and slew along with first derivatives with respect to
transistor width. EinsTuner uses this information to formulate the optimization problem
as a linear combination of slack and area. This formulation is then solved by a non-linear
optimization package LANCELOT [6], which treats all device widths as free parameters
and solves for minimum delay. Finally, energy values are obtained using AS/X circuit
simulations [1] for a given switching activity.

Figure 5 shows normalized energy-delay trade-offs for an SRAM cross-section. The
primary y-axis shows delay (norm.delay) corresponding to a given energy consumption.
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Fig. 5. Energy-Delay Curve for SRAM Cross-section. The dotted line plots the normalized sum of
transistor widths against the normalized energy consumption. The solid line plots the normalized
delay against the normalized energy consumption
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The secondary y-axis shows the normalized sum of transistor widths (norm.sumw). For
this experiment, we used parameters such as beta constraint (i.e. PMOS/NMOS width
ratio), internal slew rate, primary output slew rate, and input capacitance/stage constraints
from real designs. The initial data point for this experiment is obtained by minimizing
delay without area constraints, and the other points show minimum delay with specific
area constraints. From Figure 5, we observe that by increasing minimum delay by 60%,
we can achieve up to 48% reduction in energy.

Table 4. Leakage Energy-Delay Trade-offs for Different Vt

Vt Normalized Leakage Energy Normalized Delay
low 8.5 0.88

nominal 1 1
high 0.23 1.34

Table 4 shows normalized leakage energy-delay trade-offs for the same SRAM
cross-section using transistor widths that correspond to minimum delay. We observe
that decreasing Vt increases leakage energy dramatically (8 times), while increasing Vt

decreases leakage energy by 77% at the expense of 34% increase in delay.

Dynamic and Leakage Energy Savings. As discussed in Section 2, many techniques
can be employed to reduce cache energy, including transistor sizing, lowered Vdd, bank-
ing, serial tag and data access, higher Vt, etc. Since any of the above techniques can be
applied to the cold bank, we present results for energy savings assuming the cold bank
consumes either 0.2 or 0.6 times the dynamic and leakage energy consumed by the hot
bank. Results for using just one of the circuit-level techniques — transistor sizing from
Figure 5 — would lie in between (corresponding to roughly 0.5 time the dynamic energy
consumed by the hot bank, with roughly twice the access latency in cycles). When de-
signing with a higher Vt for the cold bank, the 77% reduction in leakage energy shown
in Table 4 corresponds roughly to 0.2 times the leakage consumed within the hot bank
with roughly a 1 cycle increase in delay for our cache organization. The use of multiple
techniques could potentially bring more aggressive energy savings at a potentially higher
access penalty, justifying our choice of range in terms of energy savings (40% to 80%
of the base case) and access penalty (1.5 to 3 times the base case).

Figure 6 shows potential energy savings from the proposed organization. For each
program, we show L1 data cache energy for three organizations - (i) word-interleaved
base case, (ii) hot-and-cold organization, where the hot bank has characteristics identical
to a bank of the base case, and the cold bank consumes 0.6 times the dynamic and leakage
energy consumed by the hot bank, (iii) hot-and-cold organization, where the hot bank is
the same and the cold bank consumes 0.2 times the energy consumed by the hot bank.
For the hot-and-cold cache, the figure also shows the contribution to total energy from
the two banks. Since 45% of all accesses are steered to the cold bank, that number serves
as an approximate upper bound to the potential energy savings.

By having a highly energy-efficient cold bank (like that represented by the third bar
in the figure), the energy consumption in the data cache reduces by an average of 37%.
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base case. The second and third bars represent a hot-and-cold cache organization, where the
dynamic and leakage energy within the cold bank are 0.6 and 0.2 times the energy within the hot
bank, respectively. For the hot-and-cold cache, the black and grey portions of the bars represent
the energy consumed within the hot and cold banks, respectively

There is little effect on L2 energy consumption since the miss rates of the two caches
are comparable. Leakage energy consumed is a function of total execution time (which
is slightly longer for the hot-and-cold cache). We observed that the contribution to total
energy savings came equally from dynamic and leakage components.

Note that energy savings can be further increased by improving steering prediction
accuracy. Our results take into account the additional energy overhead of a steering
misprediction – about 10% of all loads and stores access both banks. Also note that
the distribution of accesses across different banks is almost the same in all programs,
resulting in very little variation in energy trends across the benchmark set.

6 Conclusion

We have presented and evaluated the design of a banked cache, where each bank can
be fixed at design time to be either hot or cold, i.e., high energy and low latency, or low
energy and high latency, respectively. The performance impact of accessing the cold
cache can be minimized effectively by separating load and store instruction streams
into a critical and non-critical stream. Our results demonstrate that performance impact
is reasonably insensitive to the latency of the cold bank, allowing aggressive power
reduction techniques. This is made possible by the consistent classification of instructions
and data as critical and non-critical streams. Each additional cycle in the cold cache
latency impacts performance by about 0.8%. Energy savings are proportional to the
fraction of accesses to the cold cache, with L1 energy reduction being an average of
37% (compared to a word-interleaved base case) for an energy-efficient cold bank.

However, allocation of data blocks in the hot and cold banks increases contention and
introduces bank steering mispredicts. This results in an IPC degradation of 2.7%, com-
pared to a word-interleaved conventional cache, that severely limits the effectiveness
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of this approach. To alleviate these problems, bank prediction would have to be im-
proved or base cases with low contention would have to be considered. Such problems
were not encountered in the design of criticality-based arithmetic units with different
power/performance characteristics [21]. The hot-and-cold cache becomes more effective
when the cost of employing any power-saving technique becomes prohibitive. For ex-
ample, a hot-and-cold organization with a 2-cycle hot latency and a 6-cycle cold latency
outperforms a 6-cycle word-interleaved base case by 5.7%.

We are working with circuit designers in order to help define the energy consumption
ratio between hot and cold cache banks. Our initial analysis reveals that simple techniques
like transistor sizing and high Vt can dramatically reduce dynamic and leakage energy
consumption, validating the choice of parameters in our evaluation. We also plan to
evaluate the use of asymmetric sizes (and organizations) for hot and cold banks.
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Abstract. We present the PARROT concept aimed at both higher performance 
and power-awareness. The PARROT microarchitectural framework integrates 
trace caching, dynamic optimizations and pipeline decoupling. We employ a 
gradual and selective approach for applying complex mechanisms only for the 
most frequently used traces to maximize the performance gain at any given 
power constraint, thus attaining finer control of tradeoffs between performance 
and power awareness.  

We show that the PARROT microarchitecture delivers performance in-
creases comparable to those available through conventional doubling of execu-
tion resources (average 16% IPC improvement). This improvement comes 
through better utilization of all available resources with the combination of a 
trace cache and selective trace optimization. On the other hand, performance 
advantage of a trace cache alone is limited to wide-machine configurations. No 
less critical, however, is power awareness. The PARROT microarchitecture de-
livers the performance increase at a comparable energy level, whereas the con-
ventional path to higher performance consumes an average 70% more energy.  
Meanwhile, for those designs which can tolerate a higher power budget, 
PARROT gracefully scales up to use additional execution resources in a uni-
formly efficient manner. In particular, a PARROT-style doubly-wide machine 
delivers an average 45% IPC improvement while actually improving the Cubic-
MIPS-per-WATT power awareness metric by over 50%.  

1    Introduction 

Revolutionary and evolutionary advances in microarchitecture and process technology 
have sustained Moore’s law—doubling both transistor density and processor perform-
ance on average every 18 months—against all odds. However, despite the decreasing 
power consumption per individual transistor characteristic of newer process technolo-
gies, innovations in microarchitectural techniques and process technology increases the 
total number of transistors and their operation frequency, resulting in an overall increase 
in power consumption as well as power density. Doubling cache sizes, adding new and 
more complex types of speculation and other modern innovations require so many more 
resources that their own benefit is compromised. Current processors have become 
power limited, that is, they can only operate at limited frequency, preventing them from 
achieving their full microarchitectural performance potential. 
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In this paper we focus on power-aware microarchitectures for high-performance, 
general-purpose processors. The essential challenge within this domain is the increas-
ingly poor scaling of performance with power consumption. Nevertheless, the con-
cepts and methods we present can be applied to special purpose, low-power and low-
performance processor types as well. 

Traditionally, processor microarchitecture can be divided into front-end and back-
end parts. The front-end supplies the instructions to be executed in program order and 
the back-end executes them, possibly out-of-order, and commits the executed instruc-
tions (in-order again) updating the architectural state. The front-end bandwidth is cru-
cial for the overall performance of the system — it depends on the number of instruc-
tions that can be predicted, fetched, decoded and renamed in parallel. Since decoding 
variable-length CISC instructions, such as those characteristic of the IA32 architec-
ture, is an essentially serial activity, huge decoders must be employed to introduce the 
needed parallelism. Such decoders consume vast quantities of power; incremental 
enlargement brings diminishing incremental performance returns.  

The back-end presents different power/performance tradeoffs. Although execution 
bandwidth scales with the number of execution units, instruction scheduling efficacy 
does not linearly scale with instruction window width. The power and complexity of 
dynamic scheduling depends on execution bandwidth as well as on program behavior 
and the instruction window size [15][3]. This is one of the main reasons that low-
power architectures tend to spurn dynamic scheduling, preferring instead (VLIW like) 
static scheduling as a means for reducing the scheduling power [21]. 

This paper presents a different approach for microprocessor design that addresses 
various challenges posed by both the fetch and scheduling stages. Following 
Amdhal’s Law, we propose to take advantage of the time-honored hot/cold (or 90/10) 
paradigm. The hot/cold paradigm asserts that a “small” portion of the static program 
code is responsible for “most” of its dynamic execution. This paradigm is utilized in 
the context of profiling compilers, dynamic translators and other program-
manipulating systems — the small portion of frequent (or hot) code becomes the fo-
cus and the target of most optimization efforts. 

Identifying frequently executed code sections for optimization has been applied in 
the software-based schemes reported in [16][7][1][10]. More recently, similar meth-
ods were suggested for hardware-based systems [18][19][23][22][8][26][30]. The 
various proposals d+iffer in the methodology and resources used for detecting the hot 
paths, the structure and address space used for storing them, and the timing and re-
sources used for optimization.  

The PARROT concept aims to aggressively exploit the hot/cold paradigm in 
hardware for the benefit of both processor performance and power awareness, as indi-
cated by the PARROT acronym: Power-Aware aRchitecture Running Optimized 
Traces. The current study examines several microarchitectural alternatives based on 
this concept (we refer to them as PARROT microarchitectures). These microarchitec-
tures are organized around an optimized trace cache. Trace caches [24][28] were 
mainly proposed for obtaining higher fetch bandwidth by capturing and reusing the 
dynamic flow of instructions irrespective of program order [20][25]. In [26] it was 
observed that trace-cache based mechanisms are also useful for reducing power con-
sumption, but that differing characteristics of traces in a system may enhance either 
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power or performance. In the current work we study the limits of simultaneous 
achievement of both performance and power awareness. 

The PARROT microarchitecture is designed to effectively identify the most fre-
quent sequences of program code, aggressively optimize them once, and then effi-
ciently execute them many times. Trace selection and filtering identify the hot code, a 
dynamic optimizer optimizes it, and a trace cache stores traces for repeated execution. 
Gradual constructions of traces, pipeline decoupling, and specific trace optimizations 
are key factors for power awareness. Limiting the hardware dedicated to the cold part 
of the code may exact a small price in performance. In return, more aggressive hard-
ware may be used to improve performance/power tradeoffs for the dominant hot seg-
ments of the code. Indeed, our results show that no additional amortized energy is 
spent for the optimization of hot traces. 

The simulation framework provides both performance and energy measurements 
in order to establish performance and power/performance tradeoffs. We consider two 
“reference” microarchitectural models: a standard modern processor (a 4-wide, super-
scalar, super-pipelined, out-of-order microarchitecture) and a brute-force straightfor-
ward 8-wide extension. We examine several new power-aware high-performance al-
ternatives, including trace-cache based PARROT extensions of the reference models, 
and dynamic hot-trace optimization within the trace-cache models. Our results show 
that PARROT microarchitectures indeed attain both high performance and power 
awareness by efficiently exploiting the machine’s available resources. 

The rePlay system [22], although targeting performance issues,  has much in com-
mon with PARROT techniques. PARROT and rePlay share the dual front-end, the 
decoupled, post-retirement construction of traces, and dynamic optimization of traces 
stored in a trace-cache. To promote power awareness, PARROT proposes a finer 
decoupling of trace construction based on gradual filtering in order to improve 
controllability of competing design metrics. PARROT’s trace construction criteria are 
mostly static, enabling better adaptability to program structure. A good example is the 
handling of loops:  by cutting loops at iteration boundaries, the PARROT microarchi-
tecture prevents redundancy in the trace cache while still allowing loop unrolling.  In 
contrast, the dynamic selection criteria of rePlay are in better synergy with the predic-
tion mechanism. Our results complement and strengthen the rePlay study [30] show-
ing the significant contribution of dynamic optimizations to IA32-based processors. 

PARROT indeed goes beyond rePlay optimization scope by introducing core-specific 
optimizations which heavily exploit the fact that the optimizations are integrated into the 
hardware (their particular contribution is quantified in a separate paper [1]).  

The dichotomy between regular and irregular code led Turboscalar [4] into the de-
sign of separate pipelines, a deep-and-narrow pipeline for the irregular code, and a shal-
low-and-wide pipeline for regular code (an alternative, power-oriented dichotomy is 
proposed in [6]). Turboscalar execution optimizes the resource bandwidth required for 
higher performance. PARROT builds upon a similar conceptual separation of pipelines 
but allows for alternative implementations of the concept. The PARROT framework is 
used to study performance and energy trade-offs of several alternative structures and 
organization of the processor pipeline over a wide range of benchmarks.  

The rest of the paper is organized as follows. Section 2 describes the PARROT 
concept and microarchitecture in detail. Section 3 describes the simulation framework  
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and defines the microarchitectural models compared in the current study. Section 4 
presents the simulation results, and finally, Section 5 concludes with a summary and 
ideas for future studies. 

2    PARROT Microarchitectural Framework 

In this section we study various microarchitectures based on the PARROT concept. 
Performance and energy are evaluated within the presented simulation framework. 

2.1    The PARROT Concept 

PARROT is based on the following observations: 

• The working set of a program at any given time is relatively small. 
• Much of the complexity excesses of modern OOO processors result from handling 

rare “corner cases”. 
•  Small segments of code which are repeatedly executed (“hot-traces”) typically 

cover most of the program’s working set at any given time. 
• The hot segments of code behave differently from the rest of the code, namely they 

are more regular and predictable, and consequently they exhibit higher potential for 
ILP extraction than the other, less frequently executed parts of the code.  

The PARROT concept suggests basing the development of high performance 
power-aware systems on an asymmetric decoupling of the processor pipelines; a 
slightly different decoupling concept is proposed in [4]. Fig. 2.1 presents the conceptual 
structure of a decoupled PARROT system. The left-hand part is responsible for execut-
ing the cold portion of the code and the right-hand side executes the hot portion of the 
code. 
 

 

Fig. 2.1. Schematic PARROT split-core μarch 

 

Fig. 2.2. Schematic PARROT unified-core 
μarch 
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The cold and hot subsystems have a similar high level structure, with each being 
comprised of foreground and background components operating in parallel. The fore-
ground components include the front-end and execution pipelines which are tuned for 
either cold or hot portions of the code. The background components post-process the 
instruction flow out of the foreground pipeline making “off critical path” decisions 
such as when to move from the cold subsystem to the hot subsystem and when to ap-
ply further optimizations. Synchronization elements are required for arbitrating and 
switching states between the pipelines and for preserving global program order (archi-
tectural state).  

Previous research [26][14] indicates that a trace cache can be very efficient in han-
dling hot code, provided this code has been sufficiently well identified. (This is espe-
cially true for Intel’s IA32 ISA which features variable length instructions.) Thus, we 
base the cold subsystem on instructions fetched from an instruction cache whereas the 
hot subsystem is based on traces fetched from a trace cache. Both power-awareness 
and trace-cache effectiveness considerations limit trace construction and trace-cache 
insertion to frequently executed code sections. Thus, PARROT gradually applies 
dynamic optimizations — the hotter the trace is the more aggressive power aware 
optimizations are applied. 

Reusability of hardware work and results is important for both performance and en-
ergy savings. In the PARROT framework, the trace-cache is the container for reusable 
work. The trace cache stores decoded traces thus enabling the reuse of decoding re-
sults. It also stores optimized traces allowing for multiple reuses of the optimizations. 

Dynamic optimizations have several advantages. Dynamic information available at 
optimization time, most notably control resolution (outcome of trace internal 
branches), enables optimizations that are impossible for a static compiler. Decoupling 
these optimizations from the foreground pipeline allows for more aggressive optimi-
zations than on-the-fly optimizations that can be performed within a standard execu-
tion pipeline.  In order to take full advantage of such a relaxed hardware context, at-
omicity of traces is assumed. Trace semantics that assumes atomic commit of traces 
permits for very aggressive optimizations across basic-block boundaries, including 
elimination and reordering of instructions, provided the overall semantics of the trace 
is preserved 

Another advantage of microarchitectural level optimizations is that of architec-
tural transparency. The hardware is capable of optimizing legacy code, exploiting 
new microarchitectural features without the need for recompilation. 

2.2    Traces and Trace-Selection 

An execution trace is a sequence of operations representing a continuous segment of 
the dynamic flow (execution) of a program. Traces may contain execution beyond 
control-transfer instructions (CTIs), and so a trace may extend over several basic 
blocks. In the current study we consider decoded atomic traces. These traces contain 
decoded micro-operations (uops) and enable reuse of decode activity, thus saving 
energy [29][26] (decoded traces are of special value for IA32). Traces are constructed 
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from the originally decoded uops in program order, but may later be optimized, result-
ing in an out-of-order, different, generally shorter sequence of uops. 

Atomic traces are single-entry single-exit traces [17][28]. Although atomic trace se-
mantics requires a relatively complicated recovery mechanism and longer recovery 
time for the case of misprediction, it enables more aggressive optimizations, including 
uop reordering and elimination and branch promotion [22][23] and may efficiently 
utilize advanced trace prediction techniques [12].  

Trace selection is the process of deciding which points in the dynamic instruction 
stream should be designated as trace start and end points.  In the current study we 
apply the following deterministic selection criteria: 

• Trace capacity is capped at 64 uops. 
• With the exception of extremely large basic blocks, traces always terminate on 

CTIs. 
• All indirect jumps and software exceptions terminate traces, except RETURN in-

structions. In addition, taken backward branches also terminate a trace. 
• RETURN instructions terminate traces only if they exit the outermost procedure 

context already encountered in the current trace. 
• If two or more consecutive traces are identical, they are joined into a single trace, 

until the capacity limit is reached. This criterion, together with the taken-backwards 
termination condition on traces, achieves the effects of explicit loop unrolling, an 
enabler for other optimizations. 

With these criteria, unique trace identifiers (TIDs) can be compacted into a single 
address and a sequence of branch directions (taken/not taken). The only indirect CTI 
in this construction is a RETURN, but since its calling context is already part of the 
trace, its target address is implicitly available 

2.3    Microarchitecture 

A split-execution implementation, faithful to the PARROT microarchitectural con-
cept, consists of two disjoint subsystems for the cold and for the hot paths as pre-
sented in Fig. 2.1. Consequently, different execution engines can be employed by 
each subsystem. For example, a wider execution engine could be used for the higher-
bandwidth, trace-based hot subsystem. More sophisticated variants, not considered in 
the current study, may employ completely different execution models for the disjoint 
subsystems, such as in-order and out-of-order. An optimized unified-execution im-
plementation is presented in Fig. 2.2 - it duplicates the front-end but shares the execu-
tion resources between the hot and cold subsystems.  

The following description generally applies to both the split and unified-execution 
microarchitecture implementations. A schematic description of the major components 
is depicted in Fig. 2.3. Both cold and hot pipelines operate in two phases: the back-
ground (or post-processing) phase, which serves to select frequent parts of the exe-
cuted code, improve (optimize) them and potentially promote them to a “hotter” level, 
and the foreground phase, which is responsible for the fetch-to-execution pipeline. 
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Fig. 2.3. PARROT main μarch components 

The background phase of the cold subsystem identifies frequent IA32 instruction 
sequences and captures them as traces in the trace cache. It is composed of TID selec-
tion, TID hot-filtering and finally trace-construction and insertion into the trace-
cache. Since all committed instructions enter the TID selection phase, continuous 
training of both trace predictor and hot filter is assured. Nevertheless, only those TIDs 
that pass the hot-filter continue to the trace construction stage. The background phase 
of the hot subsystem identifies the most frequent (blazing) traces, optimizes them and 
finally inserts them back into the trace cache. Post processing is gradually performed, 
so the longer a trace is used the more aggressive optimizations are applied to it.  

Two predictors are employed: A branch predictor predicts the next cache line des-
ignated to be fetched from the instruction cache for execution on the cold pipeline. 
Simultaneously, a trace predictor predicts the TID of the next trace designated to be 
fetched from the trace cache and executed on the hot pipeline. Each predictor is based 
on a global history register (GHR). The GHR is updated for each executed CTI. Both 
predictors support speculative update upon fetch and real update upon commit.  

The fetch-selector chooses between the execution pipelines by consulting both the 
branch predictor and the trace predictor. When the trace predictor is successful in 
making a next TID prediction and a trace is successfully fetched from the trace-cache, 
it is executed in the hot pipeline. Otherwise, cold pipeline execution is commenced 
using the result of the branch predictor.  

In the foreground phase the pipelines are executing sequences of uops originating 
from either (cold) instructions or (hot) traces. This is performed by either two split 
cores, a cold core and a hot core, respectively, or by a single unified core. The advan-
tages of a unified core include smaller overhead for cold/hot state switches and 
smaller design size (with positive impact on idle power). A split core on the other 
hand enables core specialization. The cold core may specialize for example on the 
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execution of rare but complex operations or be less performance aggressive. The hot 
core may specialize in aggressive execution of atomic traces, employ simplified re-
naming schemes or rely on dynamic scheduling performed by the optimizer. In this 
study we consider standard super-scalar out-of-order cores only, in both split and uni-
fied configurations. 

There is some overhead associated with core switching, the magnitude of which is 
dependent on the number of switches and the cost of each switch. Switching cores in 
mid-execution requires synchronization and communication. The second core must 
use the correct values for registers already computed by the first core, and must not 
use them until they are ready. A sufficient but not necessary condition for this is to 
place a barrier between execution completion on one core and execution commence-
ment on the other, enforcing full-serialization. This scheme may be contrasted with 
the fine-serialization approach, where execution is overlapped between the cores 
while satisfying all dependencies between instructions executing in different cores. In 
this report we shall consider fine-grain serialization. 

The commit stage is responsible for committing IA32 instructions to the architec-
tural state. This stage deals with two synchronization issues: First, it has to commit 
instructions in program order, which means that in a split microarchitecture instruc-
tions must contain markers which permit reconstruction of the global program order 
from the interleaved execution. Secondly, the atomic hot traces should be committed 
at once as a single entity, requiring a mechanism for state accumulation. Upon any 
intermediate event that prevents the full completion of the trace, the remaining uops 
and accumulated state are flushed, and the architectural state at the commencement of 
the trace is restored. Such distracting events may result from exceptions in the execu-
tion of the trace itself, from failing of assert uops (indicating trace mispredictions) or 
from external interrupts.  

For post-processing cold code, PARROT employs a non-speculative TID/trace 
build scheme. Uops originating from cold committed instructions are collected as 
long as all encountered CTIs satisfy the trace selection criteria (see Section 2.2). 
When a termination condition is reached, a new TID, generated from the collected 
CTIs, is used to train the trace predictor. If the TID is subsequently identified as fre-
quent, the collected uops are used to construct an executable trace that can be inserted 
into the trace cache. 

In order to identify the frequently executed instruction sequences, PARROT 
gradually employs two filtering mechanism: the hot filter, which is used for selecting 
frequent TIDs from among those constructed on the cold pipeline, and the blazing 
filter, which is used for selecting the most frequent TIDs from among those executed 
on the hot pipeline. Both filters are small caches that retain access counters for each 
TID. Each trace execution increments the corresponding counter. Once the hot filter 
threshold is reached, the trace is constructed and inserted into the trace cache. When 
the blazing filter threshold is reached, the executed trace is optimized and written 
back to the trace cache, replacing the original. 

PARROT employs dynamic optimizations on blazing traces (identified by the blaz-
ing filter) facilitating supreme execution efficiency in performance as well as power. 
The optimizer heavily relies on the atomicity assumption (manifested by assert opera-
tions [22]), which enables aggressive trace-transformations (e.g. reordering).  
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2.4    Dynamic Optimizations 

The optimizations can be classified as either general purpose or core-specific optimi-
zations. General purpose optimizations are independent of the underlying execution 
core. They include logic simplifications, constant propagation and dead code elimina-
tion. Core-specific optimizations include functional transformations such as micro-
operation fusion and SIMDification, and global trace transformations such as partial 
renaming and dynamic critical path based scheduling. A companion paper [1] is dedi-
cated to a detailed study of such optimizations. 

Optimizations may result in: uop reduction, dependency elimination, simplified 
renaming and improved scheduling. Some optimizations, such as virtual renaming, 
contribute mainly to power/energy saving. Others, such as dependency elimination 
are performance oriented. Reducing the number of micro-operations contributes in 
general to both performance and energy savings.  

3    Simulation Framework 

We employ an in-house proprietary simulation environment as a modeling and re-
search vehicle for the PARROT microarchitecture. The simulators are designed with 
maximum flexibility and configurability in order to enable a comparative study of the 
diverse set of microarchitectural alternatives described in Section 3.3 below, based on 
a diverse set of benchmark applications. The simulators are trace-driven, simulating 
execution traces of applications compiled for the IA32 architecture. They implement 
all the components of the PARROT microarchitecture, including the less traditional 
optimizer and all of the optimizations and pre-computations described above. 

3.1    Performance Simulation 

The performance simulator incorporates a full memory hierarchy and newly designed 
components for the post-processing phases. 

The software architecture includes a generic, highly configurable object-oriented 
execution core class which can be instantiated with a variable number of execution 
cores of widely differing characteristics, including machine width, number of ROB 
ports and number and latencies of execution units. Because it incorporates base 
classes suitable for executing both cold-instructions and hot-traces, it can be used to 
construct widely differing machine configurations. 

One uncommon feature of our simulation framework is the abstract instruction. 
An abstract instruction has a different interpretation within the cold and hot pipelines. 
Within the cold pipeline, it remains the familiar instruction, but within the hot pipe-
line, it is the trace.  This design decision enabled both hot and cold execution cores to 
be instantiations of a generic code base. Furthermore, to maintain a high-level plug-
and-play simulation semantics, the execution cluster is not a transformer of instruc-
tions to uops, as is customary.  Rather, it outputs the same abstract instruction data 
type that it accepts for input.  This design decision greatly increased the versatility of 
the entire system and allowed experimentation with interesting configurations which 
short-circuited one or both execution clusters.  
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We modeled the optimizer as a non-pipelined unit which stores one trace in a sim-
plified ROB-like structure and analyzes the constituent uops sequentially, employing 
standard rename tables. The optimizer maintains a static dependency graph, which is 
used across different optimization passes. The optimizations are carried out in several 
passes, each pass responsible for optimizations that require similar resources. Conse-
quently, we have modeled a significant delay (on the order of 100 cycles) for optimi-
zation of a single trace. 

3.2    Energy Simulation 

For energy simulation we employed a WATTCH-like approach, using accurate and 
up-to-date data extracted from real processors for the internal components, ensuring 
the relevancy of our results. Our methodology for power estimation was designed 
pursuant to a number of objectives. As above for performance simulation, it had to 
incorporate sufficient flexibility to model widely differing microarchitectures. Fur-
thermore, it had to effectively cope with different levels of abstraction, i.e. different 
microarchitecture components are described in differing levels of detail. Moreover, it 
had to fully cover all types of design, including arrays, random logic and data paths. 

The power-modeling infrastructure is based on Intel propriety tools. These include 
formulas for small functional blocks, each of which was closely correlated to the cor-
responding hardware implemented on recent technology. The formulas are composed 
of arithmetic expressions involving parameters, which stand for dynamic events (i.e. 
counters). A formula is designed to predict the dynamic energy consumption of the 
block, and it is composed of two sub-formulas covering both active and idle power. 

The methodology we developed allows us to use the correlated formulas as build-
ing blocks, and compose them into larger formulas describing the energy consump-
tion of higher-level units in our microarchitecture. In this composition process we 
utilize three mechanisms: instantiation, scaling and mapping. For each unit in the 
microarchitectural model we instantiate a set of formulas that best fit the functionality 
and energetic behavior of that unit. For each formula we have to provide a mapping of 
its original parameters into actual event-counters of the simulated model. In addition, 
each formula is potentially the subject of scaling representing uniform size or activity 
enlargements over the original block. There are separate scaling factors for active and 
for idle power, representing extensions such as increased number of ports, increased 
(or decreased) number of entries in a cache, etc. 

Consequently, power modeling for conventional units is relatively straightforward, 
whereas the power modeling for new units which have no similar original formulas 
(e.g., optimizer or trace construction), requires more work. For example, the power 
model of the optimizer employs instances of buffers and tables taken from the original 
ROB, rename and scheduling stages of the pipeline, scaled down to accommodate a 
single trace, and with some combinations of significant optimizer events mapped to 
the original execution events. 

With this methodology, each microarchitectural model has its own set of formulas 
corresponding to the specific units being instantiated. Performance simulation runs 
provide the actual statistics used to compute the energy consumption for the units 
when their values are plugged into the corresponding formulas. The total energy  
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consumption of a model is the total of its constituent formulas. Approximate relative 
contribution per unit is the fraction of the value of a formula of this total.  

Leakage is derived from the dynamic power under some simplifying assumptions. 
We assume uniform leakage 1) in space over two coarse component types, the processor 
core and the level-2 cache, and 2) in time, modeling a consistently high temperature. 

To emulate the high temperature, we choose the application with highest average 
dynamic-power PMAX of the base OOO model.  This turns out to be swim of the 
SpecFP suite (see below). For a component area A, we define the uniform leakage 
power as A * PMAX * T, where T is a technology constant. We use technology con-
stants of 5% for each MByte of level 2 cache and 40% for the standard core. These 
fairly large constants are used in accordance with the technological trend of increas-
ing leakage. Thus, for a model with M Mbytes of L2 cache and a core of area K times 
the standard OOO core, the total leakage energy LE of an application running for CYC 
cycles is modeled by the formula LE = PMAX * (0.05 * M + 0.4 * K) * CYC. 

This infrastructure produces energy estimations for the different microarchitec-
tural models and their components, usable for global trade-off analysis. 

3.3    Models 

We modeled a variety of configurations to elucidate various aspects of the power and 
performance of the PARROT microarchitecture. The reference model (N) was con-
figured to resemble a standard 4-wide OOO machine. In the ensuing discussion, nar-
row will refer to different variants of this standard 4-wide, while wide should be un-
derstood to refer to variants of a more generous 8-wide. The configurations space we 
consider is depicted in Table 3.1. 

Table 3.1. Two-dimensional configuration space 

Traditional width 
Configuration Dimensions Narrow Wide 

Base N W 
Selective TC TN TW 
Optimizer TON TOW 

PARROT 
accumulated 
features 

Split core TOS 

Building on our reference base narrow configuration, we created a theoretical con-
figuration where all stages from front end through retirement are wide (W).  Although 
today’s front ends cannot support 8-wide fetch (again, in particular for a variable 
length ISA such as IA32), the model helps in comparing the benefits of the PARROT 
microarchitecture to those available through incremental improvements.  

The PARROT microarchitecture itself is expressed most naturally through a con-
figuration where a narrow front end is joined to an execution engine capable of exe-
cuting trace-cache based optimized hot traces. The PARROT configurations are de-
noted by TON, TOW and TOS, signifying a narrow, wide or split (narrow for cold, 
wide for hot) cores, respectively. The T stands for selective trace-cache and O stands 
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for dynamic optimizations. Finally, to assess the significance of the role trace optimi-
zations play in improving performance, two additional configurations are included 
based on N and W, including selective trace-caching, but with trace optimizations 
disabled: TN and TW, respectively. The microarchitectural properties of all seven 
configurations are summed up in Table 3.2. 

Table 3.2. μarch settings of different models 

 Parameter  N W TN / TON TW / TOW TOS 

Relative core area 1 2 1.3 / 1.4 2.3 / 2.4 3.1 

Predictor entries (branch + trace) 4K 8K 2K + 2K 4K + 4K 

FHR length (branch + trace) 16 16 16 + 32 16 + 32 

Icache size 64 KB 64 KB 32 KB 32 KB 

FE pipeline width (cold + hot) 4 8 4 + 4 4 + 8 

ROB entries 100 150 100 150 100 + 150 

Sched. Window 32 50 32 50 32 + 50 

Exec. Ports 4 8 4 8 4 + 8 

EXEC pipeline width 4 8 4 8 4 + 8 

Hot filter: entries,  threshold - - 1K, 24 1K, 8 

Blazing filter: entries,  threshold - - 1K, 32 1K, 16 

Tcache entries - - 128 512 

Max uops in trace - - 64 

Optimizer latency - - 100 cycles, non pipelined 

L1 Dcache: size, latency 64 KB, 3 cycles 

L2 Ucache: size, latency 2 MB, 9 cycles 

Memory latency 120 cycles 

Line size (I and D) 64 B 

All caches  (I, D,T)  8-way associative, LRU 

3.4    Benchmarks 

Our benchmark suite covers a wide range of application traces, 30 or 100 million in-
structions each. The 44 application runs can be classified as follows: 

• SpecInt 2000: bzip, crafty, eon, gap, gcc, gzip, parser, perlbmk, twolf, vortex, vpr 
(30M). 

• SpecFP 2000: ammp, apsi, art, equake, facerec, fma3d, lucas, mesa, sixtrack, swim, 
wupwise, (30M). 

• Office / Windows applications from SysMark 2000: excel, office, powerpoint, vi-
russcan, winzip, word (100M). 

• Multimedia: flash, photoshop (from SysMark-2000, 100M), Dragon, lightwave, 
quakeIII, 3DsMax (light, anisotropicwheel, raster and geom), two Flask-MPEG4 
runs (custom Multimedia traces, 30M). 

• DotNet: one image, two numerical and two phong runs (100M). 
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3.5    Metrics 

We employ a variety of metrics designated to evaluate and compare different aspects 
of the simulated models. For the overall processor performance we focus on the IPC, 
total energy and Cubic-MIPS-per-WATT (CMPW) measurements. IPC and total en-
ergy are useful for understanding the design tradeoffs assuming the same frequency 
and same voltage. The CMPW metric is instrumental in quantifying the design trade-
offs and power awareness of a processor assuming energy consumption could be al-
ways traded for performance using voltage or frequency scaling [5][31]. In practice, 
the applicability range of such tradeoffs is limited by variable technological con-
straints which are beyond the scope of this research. 

In addition, we present some of the most important and illuminating parameters 
characterizing the PARROT microarchitecture, such as coverage, uop reduction and 
energy breakdown. 

4    Results 

This section examines the performance and power awareness of alternative enhance-
ments applied to the reference 4- and 8-wide OOO machines N and W, respectively. 
We consider overall performance and power tradeoffs over a variety of configurations 
and benchmarks, as well as a detailed examination of the contribution of different 
components to the overall result. The TOS conceptual microarchitecture statistics are 
presented only as a reference for alternative future developments. 

4.1    Performance and Power Awareness 

We start by examining the impact of the PARROT extensions on the performance of 
N and W, respectively, as depicted in Fig. 4.1. The integration TW of a trace cache 
into the wide machine provides an additional 7% to the IPC, whereas the same exten-
sion to the narrow model (TN) has a negligible 2% performance benefit, mainly since 
the machine remains 4-wide balanced. However, the PARROT based design that in-
cludes gradual optimizations of the hot traces is much better equipped to utilize the 
available resources. The TON model achieves 17% performance improvement over N 
and the full blown TOW improves IPC by more than 25% over W. It can be observed 
that the irregular SpecInt applications and the execution-limited multi-media applica-
tions benefit the less from the trace-cache alone. 

Considering the additional energy required for achieving the above mentioned per-
formance improvements, we observe in  Fig. 4.2 that all the extensions to the wide 
machine actually save energy. The reason for that is the vast energy inefficiency of 
the base wide machine (see Fig. 4.5 below). Regarding the narrow machines, only the 
TW configuration exhibits significant 12% increase in energy consumption. PARROT 
style optimizations result in either negligible 3% increase over N or a 18% energy 
saving over W.  

The CMPW criterion weights both the performance gain and the energy loss as in-
dicated in Fig. 4.3. Power awareness of the PARROT-based models TON and TOW 
improves over the corresponding base machines by 32% and 92%, respectively. 
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So far we have presented measurements relative to the base line models. It is of 
equal interest to consider the trade-offs between the extreme microarchitectural alter-
natives. We consider the base-models compared among themselves, the narrow 
PARROT TON compared to the brute-force wide W and finally the full-blown TOW 
compared to the baseline N (Fig. 4.4, Fig. 4.5 and Fig. 4.6). The major message here is 
the viability of the PARROT approach as a reasonable performance alternative to 
straightforward machine widening, with far better power awareness.  
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Fig. 4.4. IPC improvement across configura-
tions 
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 Fig. 4.2.  Increased  energy  consumption  
 over baseline 
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Fig. 4.5 Energy degradation across configura-
tions 

Power Awareness Improvement

-20%
0%

20%
40%
60%
80%

100%
120%
140%

D
o

tN
et

M
M

ed
ia

O
ff

ic
e

S
p

ec
F

P

S
p

ec
In

t

G
E

O
M

E
A

NIn
cr

ea
se

 in
 C

ub
ic

 M
IP

S
 p

e
r 

W
at

t 

TN / N

TON / N

TW / W

TOW / W

TOS / W

 

 Fig. 4.3.  Improved  power  awareness,  over 
 baseline of same width  

Power Awareness: Extremes

-30%

0%

30%

60%

90%

120%

D
o

tN
et

M
M

ed
ia

O
ff

ic
e

S
p

ec
F

P

S
p

ec
In

t

G
E

O
M

E
A

N

In
cr

es
ae

 i
n

 C
u

b
ic

 M
IP

S
 p

er
 W

at
t

W / N

TON / W
TOW / N

 
 

Fig. 4.6. CMPW across configurations 
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First, we observe that widening a machine systematically contributes to perform-
ance, but inevitably consumes more energy. The interesting phenomenon is the TON 
configuration which not only slightly outperforms the doubly wide machine W, but it 
does it with significant 39% lower energy consumption. Weighting both metrics into 
CMPW we can see that the PARROT extensions are 67% better than mere widening. 
Nevertheless, if a large power budget is available, the combination of both wider ma-
chine and PARROT-style extensions exhibited by the TOW configuration can provide 
an average 45% IPC increase as well as 51% CMPW improvement over base-line N. 

4.2    Front-End Capabilities 

We demonstrate the better predictability of hot code using misprediction values for 
the baseline N model with a 4K-entries branch predictor versus the PARROT TON 
model with branch and trace predictors, 2K-entries each. Fig. 4.7 shows the behavior 
of the PARROT machine clearly split between the hot code, for which the trace 
misprediction rate is even smaller than the branch misprediction rate of N, as opposed 
to the cold code, for which the branch misprediction rate is significantly the highest. 
This split demonstrates the better predictability of the PARROT-constructed hot 
traces over the cold code. 
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Fig. 4.7. Normalized (per instruction) miss-
prediction rates  
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Fig. 4.8. Trace-cache hot (fetch) coverage 

Coverage, as depicted in Fig. 4.8, represents the quality of the trace prediction, se-
lection and filtering mechanisms with respect to the trace-cache size and the bench-
mark characteristics. The coverage is about 90% for the very regular SPEC-FP appli-
cations but around the 60-70% for the control intensive SPEC-INT applications. 

The impact of a smaller trace cache of the narrow models (128 entries) vs. the 
wider models (512 entries) is manifested in the large coverage gaps between TON 
and TOW exhibited by larger working-set applications such as SPEC-INT or multi-
media. Low coverage is particularly harmful for the TN configuration in which all the 
potential performance benefit is due to the trace cache‘s high fetch-bandwidth. This 
explains the correlation between the low coverage of SpecInt and multi-media appli-
cations on the narrow models and the fact that the TN model exhibits no IPC im-
provement for these models (see Fig. 4.1 above). 
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4.3    Optimizer Capabilities 

The direct contribution of dynamic optimizations is most significantly reflected in 
the reduction in the dynamic number of executed uops and the reduction in average 
trace critical (dependency) path. Reducing the number of uops contributes signifi-
cantly to both performance gain and reduction in active energy consumption. 
Shorter critical paths enable better scheduling in terms of higher ILP and shorter 
execution time. Overall shortening of the application execution time decreases the 
leakage and idle energy consumption. These contributions of the optimizer are de-
picted in Fig. 4.9 which shows average uop reduction of 19% and average depend-
ency reduction of 8%. Note the relatively higher dependency reduction on the quite 
complex code of SpecInt. 
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Fig. 4.10. Utilization of the optimizer work 

Another important aspect of the microarchitecture is the amount of reuse of the 
work done by the optimizer. Fig. 4.10 depicts the optimization utilization in terms of 
average number of dynamic execution of optimized traces. The highest reusability is 
exhibited by the SPEC-FP applications due to the good spatial locality of traces in the 
trace cache. 

4.4    Energy Breakdown 

The energy breakdown between the major components of three models is depicted in 
Fig. 4.11. The models include the baseline N, the very power-aware narrow PARROT 
model TON and the conceptual, widest PARROT model TOS. Breakdown is shown 
for three applications of quite different characteristics: flash, swim and gcc. 

It is interesting to note the diminishing energy contribution of the front-ends as we 
move from N to TON and then to TOS. Additionally, on a wider machine such as 
TOS the energy contribution of all execution components increases. Note that total 
energy required for trace manipulation, including filtering, construction of uops into 
atomic traces and advanced optimizations is in the order of 10% of the overall energy 
consumption. 
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Fig. 4.11. Energy breakdown for different models 

5    Conclusions and Future Work 

In this paper we presented the PARROT microarchitectural framework aimed at 
improving both processor performance and power awareness. The PARROT con-
cept consists of asymmetric decoupling of the processor into subsystems responsi-
ble for handling the cold (infrequent) and hot (frequent) portions of the code, thus 
designing each part according to different power and performance considerations. 
PARROT based microarchitectures use an instruction cache for the cold code and a 
decoded trace cache and gradual optimization techniques for executing the hot seg-
ments of the code. 

We have established clear advantage of the PARROT-based approach for de-
signing general-purpose, high-performance power-aware processors. The pre-
sented simulation results demonstrate that applying the PARROT concept to a 
standard, 4-wide, OOO processor yields comparable performance to an 8-wide 
processor, however, consuming significantly less energy. Applying the PARROT 
concept to the wider processor achieves significant improvement on both per-
formance and energy. 

One major topic for future research is related to split-core microarchitectures. We 
intend to investigate the potential advantage of such design for establishing even bet-
ter performance/energy tradeoffs by considering different alternatives for the decoup-
led split cores. 
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